„Termodinamika példák - Jég fagyása” változatai közötti eltérés
a |
a (→Feladat) |
||
14. sor: | 14. sor: | ||
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex># Mennyi idő alatt képződik $z=5\,\mathrm{cm}$ vastag jégréteg egy tó felszínén, ha a léghőmérséklet $T_\ell=-10\,\mathrm{^\circ C}$, a víz hőmérséklete a jégréteg alatt $ | + | </noinclude><wlatex># Mennyi idő alatt képződik $z=5\,\mathrm{cm}$ vastag jégréteg egy tó felszínén, ha a léghőmérséklet $T_\ell=-10\,\mathrm{^\circ C}$, a víz hőmérséklete a jégréteg alatt $T_0=0\,\mathrm{^\circ C}$? Tegyük fel, hogy a jégréteg felső felülete mindig azonos hőmérsékletű a levegővel, alső felülete pedig mindig $0\,\mathrm{^\circ C}$-os. A jég olvadáshője $L_o=335\,\mathrm{\frac{J}{g}}$, hővezetési tényezője $\lambda=2,1\cdot10^{-2}\,\mathrm{\frac{J}{s\cdot cm\cdot ^\circ C}}$, sűrűsége pedig $\rho=0,92\,\mathrm{\frac{g}{cm^3}}$.</wlatex><includeonly><wlatex>{{Útmutatás|content= Írjuk fel egy elemi időtartam alatt keletkező elemi vastagságú jégréteg felszabadulásakor keletkező hőt, és tegyük fel, hogy ez a jégrétegen keresztül hővezetéssel távozik, majd integráljuk a kapott egyenletet. Az analitikus megoldás érdekében hanyagoljuk el a jég ''fajhőjét''.}} {{Végeredmény|content=$$z(t)=\left(\frac{2\lambda(T_0-T_\ell)}{\rho L_o}\right)^{1/2}t^{1/2},$$ 5 óra alatt képződik $5\,\mathrm{cm}$ vastag jégréteg.}}</wlatex></includeonly><noinclude> |
+ | |||
== Megoldás == | == Megoldás == | ||
<wlatex>A $\frac{\mathrm{d}Q}{\mathrm{d}t}=-\lambda A\frac{\mathrm{d}T}{\mathrm{d}z}$ hővezetési egyenletet most használjuk fel, hogy felírjuk egy már létező $z$ vastagságú jégrétegen keresztüli hőkivonást, ami egy $\mathrm{d}z$ vastagságú jégréteg megfagyasztásához szükséges. | <wlatex>A $\frac{\mathrm{d}Q}{\mathrm{d}t}=-\lambda A\frac{\mathrm{d}T}{\mathrm{d}z}$ hővezetési egyenletet most használjuk fel, hogy felírjuk egy már létező $z$ vastagságú jégrétegen keresztüli hőkivonást, ami egy $\mathrm{d}z$ vastagságú jégréteg megfagyasztásához szükséges. |
A lap 2013. április 3., 20:14-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Termodinamika - Kinetikus gázelmélet, transzportfolyamatok |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Mennyi idő alatt képződik vastag jégréteg egy tó felszínén, ha a léghőmérséklet , a víz hőmérséklete a jégréteg alatt ? Tegyük fel, hogy a jégréteg felső felülete mindig azonos hőmérsékletű a levegővel, alső felülete pedig mindig -os. A jég olvadáshője , hővezetési tényezője , sűrűsége pedig .
Megoldás
A hővezetési egyenletet most használjuk fel, hogy felírjuk egy már létező vastagságú jégrétegen keresztüli hőkivonást, ami egy vastagságú jégréteg megfagyasztásához szükséges.
Ha a fagyás kellően lassú, feltehetjük, hogy az előző feladatban bizonyított módon lineáris hőmérsékletprofil alakul ki a vastag jégrétegben.
A fagyás során vízből vastagságú tömegű -os jégréteget
hő elvonásával tudunk létrehozni.
A fenti ismereteket a hővezetési egyenletbe helyettesítve:
amit a változók szétválasztásának módszerével megoldhatunk, a
azaz 5 óra alatt képződik vastag jégréteg.
Megjegyzés
A feladatot nagyon elbonyolítaná, ha figyelembe akarnánk venni, hogy a már meglevő jégrétegben fenn kell tartanunk a lineáris hőmérsékletprofilt és ez további (helyfüggő nagyságú) hőáramot igényel. Ez a közelítés miatt indokolt nem túl vastag jégpáncélra.
Ekkor a hővezetési egyenletet és peremfeltétel mellett kellene megoldani, ahol és is ismeretlen.