„Termodinamika példák - Gázcsere két gázzal” változatai közötti eltérés
8. sor: | 8. sor: | ||
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex># Két azonos térfogatú tartály kacsolódik egymáshoz, a szabad úthosszhoz képest kisméretű nyíláson keresztül. Az egyikben $p_K$ nyomású hidrogéngáz, a másikban kétszer akkora nyomású oxigéngáz van. A gázok $T$ hőmérséklete azonos és időben állandó. A kinetikus gázelmélet segítségével mutassuk ki, hogy a két tartályban azonos $p=3p_\text{kezd}/2$ egyensúlyi nyomás alakul ki!</wlatex><includeonly><wlatex>{{Útmutatás|content=Használjuk ki, hogy | + | </noinclude><wlatex># Két azonos térfogatú tartály kacsolódik egymáshoz, a szabad úthosszhoz képest kisméretű nyíláson keresztül. Az egyikben $p_K$ nyomású hidrogéngáz, a másikban kétszer akkora nyomású oxigéngáz van. A gázok $T$ hőmérséklete azonos és időben állandó. A kinetikus gázelmélet segítségével mutassuk ki, hogy a két tartályban azonos $p=3p_\text{kezd}/2$ egyensúlyi nyomás alakul ki!</wlatex><includeonly><wlatex>{{Útmutatás|content=Használjuk ki, hogy a két gáz nem hat kölcsön, alkalmazzuk a parciális nyomások tételét.}}</wlatex></includeonly><noinclude> |
== Megoldás == | == Megoldás == | ||
<wlatex>Amikor a gázcsere kis lyukon keresztül valósul meg a tartályok között, feltehetjük, hogy a gáz egy-egy tartályon belül végig egyensúlyi állapotban marad. Ha a lyuk mérete kisebb az átlagos szabad úthossznál, akkor a rajta keresztül időegység alatt távozó molekulák száma pedig megegyezik azzal, az azonos méretű tartályfalának ütközik egységnyi idő alatt. Az ideális gáz közelítésben a két gáz molekulái sem saját fajtájukkal, sem a másik géázzal nem hatnak kölcsön, ezért külön differenciálegyenleteket írhatunk fel az egyes gázokra: | <wlatex>Amikor a gázcsere kis lyukon keresztül valósul meg a tartályok között, feltehetjük, hogy a gáz egy-egy tartályon belül végig egyensúlyi állapotban marad. Ha a lyuk mérete kisebb az átlagos szabad úthossznál, akkor a rajta keresztül időegység alatt távozó molekulák száma pedig megegyezik azzal, az azonos méretű tartályfalának ütközik egységnyi idő alatt. Az ideális gáz közelítésben a két gáz molekulái sem saját fajtájukkal, sem a másik géázzal nem hatnak kölcsön, ezért külön differenciálegyenleteket írhatunk fel az egyes gázokra: |
A lap 2013. április 2., 23:38-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Termodinamika - Kinetikus gázelmélet, transzportfolyamatok |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Két azonos térfogatú tartály kacsolódik egymáshoz, a szabad úthosszhoz képest kisméretű nyíláson keresztül. Az egyikben nyomású hidrogéngáz, a másikban kétszer akkora nyomású oxigéngáz van. A gázok hőmérséklete azonos és időben állandó. A kinetikus gázelmélet segítségével mutassuk ki, hogy a két tartályban azonos egyensúlyi nyomás alakul ki!
Megoldás
Amikor a gázcsere kis lyukon keresztül valósul meg a tartályok között, feltehetjük, hogy a gáz egy-egy tartályon belül végig egyensúlyi állapotban marad. Ha a lyuk mérete kisebb az átlagos szabad úthossznál, akkor a rajta keresztül időegység alatt távozó molekulák száma pedig megegyezik azzal, az azonos méretű tartályfalának ütközik egységnyi idő alatt. Az ideális gáz közelítésben a két gáz molekulái sem saját fajtájukkal, sem a másik géázzal nem hatnak kölcsön, ezért külön differenciálegyenleteket írhatunk fel az egyes gázokra:
a molekulák átlagos sebessége fordítottan arányos a molekulatömeggel (a két tartály hőmérséklete) azonos: , .
Legyen kezdetben az 1. tartályban a hidrogén és a másodikban az oxigén:
Egyensúlyban , azaz .
Az anyagmegmaradás értelmében , aminek értelmében:
az előző összefüggést behelyettesítve a hidrogénre
és analóg módon az oxigénre
adódik.
A kezdeti és nyomásokból összefüggést nyerjük. A kialakuló
és
nyomásokból pedig a parciális nyomások tétele szerint
adódik.
Speciálisan a feladat szerint , (továbbá ), ezeket az előző képletbe helyettesítve a kialakuló egyensúlyi nyomás .
A részecskeszámokra vonatkozó differenciálegyenletek megoldása az előző feladatéval analóg.