„Termodinamika példák - Gázcsere két gázzal” változatai közötti eltérés
a (→Megoldás) |
a |
||
6. sor: | 6. sor: | ||
| tárgynév = Kísérleti fizika 3. gyakorlat | | tárgynév = Kísérleti fizika 3. gyakorlat | ||
| témakör = Termodinamika - Kinetikus gázelmélet, transzportfolyamatok | | témakör = Termodinamika - Kinetikus gázelmélet, transzportfolyamatok | ||
+ | | rövid = Kinetikus gázelmélet, transzport | ||
}} | }} | ||
== Feladat == | == Feladat == |
A lap 2013. április 23., 19:24-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Kinetikus gázelmélet, transzport |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Két azonos térfogatú tartály kacsolódik egymáshoz, a szabad úthosszhoz képest kisméretű nyíláson keresztül. Az egyikben nyomású hidrogéngáz, a másikban kétszer akkora nyomású oxigéngáz van. A gázok hőmérséklete azonos és időben állandó. A kinetikus gázelmélet segítségével mutassuk ki, hogy a két tartályban azonos egyensúlyi nyomás alakul ki!
Megoldás
Amikor a gázcsere kis lyukon keresztül valósul meg a tartályok között, feltehetjük, hogy a gáz egy-egy tartályon belül végig egyensúlyi állapotban marad. Ha a lyuk mérete kisebb az átlagos szabad úthossznál, akkor a rajta keresztül időegység alatt távozó molekulák száma pedig megegyezik azzal, az azonos méretű tartályfalának ütközik egységnyi idő alatt. Az ideális gáz közelítésben a két gáz molekulái sem saját fajtájukkal, sem a másik géázzal nem hatnak kölcsön, ezért külön differenciálegyenleteket írhatunk fel az egyes gázokra:
a molekulák átlagos sebessége fordítottan arányos a molekulatömeggel (a két tartály hőmérséklete) azonos: , . Az anyagmegmaradás következtében a 2. tartály tartalmát nem kell külön számon tartanunk.
Legyen kezdetben az 1. tartályban a hidrogén és a másodikban az oxigén:
Egyensúlyban , azaz .
Az anyagmegmaradás értelmében , aminek következtében:
az előző összefüggést behelyettesítve a hidrogénre
és analóg módon az oxigénre
adódik.
A kezdeti és nyomásokból összefüggést nyerjük. A kialakuló
és
nyomásokból pedig a parciális nyomások tétele szerint
adódik.
Speciálisan a feladat szerint , (továbbá ), ezeket az előző képletbe helyettesítve a kialakuló egyensúlyi nyomás .
A részecskeszámokra vonatkozó differenciálegyenletek megoldása az előző feladatéval analóg.