Termodinamika - Kinetikus gázelmélet, transzportfolyamatok

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Stippinger (vitalap | szerkesztései) 2012. szeptember 10., 15:44-kor történt szerkesztése után volt.


Feladatok

Navigáció Pt·1·2·3
Kísérleti fizika 3. gyakorlat
Gyakorlatok listája:
  1. Kinetikus gázelmélet, transzport
  2. Állapotváltozás, I. főtétel
  3. Fajhő, Körfolyamatok
  4. Entrópia, II. főtétel
  5. Homogén rendszerek
  6. Fázisátalakulások
  7. Kvantummechanikai bevezető
Termodinamika - Kinetikus gázelmélet, transzportfolyamatok
Feladatok listája:
  1. Id. g. nyomása belső energiával
  2. Stern-kísérlet
  3. Energia szerinti eloszlás
  4. Vákuum
  5. Diffúzió és belső súrlódás
  6. Gáz szökése
  7. Gázcsere tartályok közt
  8. Gázcsere két gázzal
  9. Lineáris hőmérsékletprofil
  10. Jég fagyása
  11. Hővezetés
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064



  1. Fejezze ki az egyatomos ideális gáz nyomását a gáz \setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0% belső energiájával és \setbox0\hbox{$V$}% \message{//depth:\the\dp0//}% \box0% térfogatával!
  2. Stern híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, \setbox0\hbox{$1880\,\mathrm{K}$}% \message{//depth:\the\dp0//}% \box0%-es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az \setbox0\hbox{$F$}% \message{//depth:\the\dp0//}% \box0% pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% nyíláson át jutottak az \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% sugarú hengerfelületre. A berendezés \setbox0\hbox{$\omega$}% \message{//depth:\the\dp0//}% \box0% szögsebességgel forgott, aminek következtében a \setbox0\hbox{$v$}% \message{//depth:\the\dp0//}% \box0% sebességű atom az \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% pont helyett \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0%-ben csapódott le.
    • a) Állapítsuk meg az \setbox0\hbox{$AB$}% \message{//depth:\the\dp0//}% \box0% ív \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% hosszát \setbox0\hbox{$800\,\frac{\mathrm{m}}{\mathrm{s}}$}% \message{//depth:\the\dp0//}% \box0% sebességű atomok esetén, ha a fordulatszám \setbox0\hbox{$50\,s^{-1}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$R=20\,\mathrm{cm}$}% \message{//depth:\the\dp0//}% \box0%!
    • b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok.
  3. Az \setbox0\hbox{$F(v)$}% \message{//depth:\the\dp0//}% \box0% sebességeloszlási függvényből a \setbox0\hbox{$w=mv^2/2$}% \message{//depth:\the\dp0//}% \box0% összefüggés felhasználásával vezessük le az \setbox0\hbox{$f(w)$}% \message{//depth:\the\dp0//}% \box0% energia-eloszlási függvényt, ahol \setbox0\hbox{$f(w)$}% \message{//depth:\the\dp0//}% \box0% azt mutatja meg, hogy az összes molekula hányadrésze rendelkezik \setbox0\hbox{$w$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$w+\mathrm{d}w$}% \message{//depth:\the\dp0//}% \box0% közötti mozgási energiával! Mekkora a legvalószínűbb \setbox0\hbox{$w_0$}% \message{//depth:\the\dp0//}% \box0% energia és mennyi az átlagos kinetikus energia?
  4. Legfeljebb mekkora lehet az \setbox0\hbox{$1\,\mathrm{l}$}% \message{//depth:\the\dp0//}% \box0% térfogatú, gömb alakú edényben lévő \setbox0\hbox{$300\,\mathrm{K}$}% \message{//depth:\the\dp0//}% \box0%-es hidrogéngáz nyomása, hogy az átlagos szabad úthossz nagyobb legyen az edény átmérőjénél? A hidrogénmolekula átmérője \setbox0\hbox{$2\cdot10^{-10}\,\mathrm{m}$}% \message{//depth:\the\dp0//}% \box0%.
  5. Hogyan változik az ideális gáz \setbox0\hbox{$D$}% \message{//depth:\the\dp0//}% \box0% diffúziós állandója és \setbox0\hbox{$\eta$}% \message{//depth:\the\dp0//}% \box0% belső súrlódási együtthatója, ha a gáz térfogata \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0%-szersére nő
    • a) állandó hőmérsékleten,
    • b) állandó nyomáson?
  6. \setbox0\hbox{$V$}% \message{//depth:\the\dp0//}% \box0% térfogatú, vékonyfalú tartályban ideális gáz bvan, az edényt légüres tér veszi körül.
    • a) Hogyan változik az idő függvényében az edényben lvő gáz \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% részecskeszáma, ha a tartály falá n igen kicsi, \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% területű lyuk van?
    • b) Határozzuk meg azt az időtartamot, amely alatt a gáz nyomása felére csökken! Feltesszük, hogy a gáz kiáramlása lassú, így a gáz egyensúlyi állapotát a folyamat nem zavarja, továbbá a lyuk mérete sokkal kisebb, mint a szabad úthossz, tehát a lyuk területére is érveényes az az összefüggés, hogy az edény falának időegységr alatt nekiütköző molekulák szána \setbox0\hbox{$\frac{1}{4}nA\bar{v}$}% \message{//depth:\the\dp0//}% \box0% (\setbox0\hbox{$\bar{v}$}% \message{//depth:\the\dp0//}% \box0% a molekulák átlagsebességer). A hőmérséklet mindvégig \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0%.