Termodinamika - Állapotváltozás, I. főtétel
A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Stippinger (vitalap | szerkesztései) 2013. május 4., 14:59-kor történt szerkesztése után volt.
Ismert összefüggések
A termodinamika első főtétele
ahol a rendszer belső energiájának megváltozása, a rendszer által felvett hő, a rendszeren a környezet által végzett makroszkopikus munka, például .
A Van der Waals-gáz állapotegyenlete
ahol koháziós nyomás, tiszta térfogat, és kísérletileg meghatározható állandók.
Feladatok
- Készítsen vázlatos ábrát ideális gáz
- a) izochor,
- b) izobár,
- c) izoterm és
- d) adiabatikus
- állapotváltozásáról , és koordináta-rendszerekben úgy, hogy a kiindulási állapot minden esetben ugyanaz legyen!
- Ábrázolja vázlatosan ideális gáz
- a) izochor,
- b) izobár,
- c) izoterm és
- d) adiabatikus
- állapotváltozásánál a belső energiának a hőmérséklettől-, térfogattól- és a nyomástól való függését! Legyen a belső energia az ordináta, és minden folyamatnál legyen ugyanaz a kiindulási állapot!
- Állapítsuk meg, milyen összefüggés van egy ideális gáz által állandó nyomáson végzett munka, a gázzal közölt hőmennyiség és a belső energia-változás között, ha a fajhőviszony ismert!Végeredmény
- Ha egy rendszert az ábrán látható 1 úton viszünk az állapotból a állapotba, hőt vesz fel, miközben munkát végez.
- a) Mennyi hőt vesz fel a rendszer az és állapotok közt a 2 úton, ha közben munkát végez?Végeredmény
- b) Ha munkával vihetjük a rendszert -ből -ba a 3 út mentén, mennyi a közben leadott hő?Végeredmény
- a) Mennyi hőt vesz fel a rendszer az és állapotok közt a 2 úton, ha közben munkát végez?
- Mutassa meg, hogy ideális gáz izoterm összenyomásánál a kompresszibilitás , míg adiabatikus összenyomásnál , ahol .ÚtmutatásHasználjuk a kompresszibilitás definícióját, és a megfelelő folyamatokat leíró egyenleteket.Végeredmény
- A állapotegyenlet ismeretében fejezzük ki a mennyiséget a hőtágulási együttható és a izotermikus kompresszibilitás segítségével!ÚtmutatásHasználja fel a két mennyiség definícióját és azt, hogy állandó nyomáson a teljes differenciál nulla.Végeredmény
- Egy térfogatú szobában befűtünk. A szobában a hőmérséklet eközben állandó légköri nyomáson -ről -re nő. Mennyivel változik a szobában lévő levegő belső energiája?VégeredményNem változik.
- Egy kezdetben térfogatú, fajhőviszonyú ideális gáz térfogatát -re növeljük. A folyamatot egyszer adiabatikusan, másodszor pedig izotermikusan hajtjuk végre. Az első és második végállapotban a nyomások aránya . Mekkora a térfogat?Végeredmény
- Van der Waals-gázok belső energiájának térfogatfüggése az alábbi összefüggéssel adható meg: ahol a gáz tömege, a móltömeg, az állandó térfogaton mért fajhő, állandó.
Egy hőszigetelt tartályt rögzített, jó hővezető anyagból készített fal választ két részre, amelyekbe azonos tömegű Van der Waals-gázt vezettünk be. A kezdeti állapotjellemzők: , , illetve , .- a) Mennyi lesz a végső egyensúlyi hőmérséklet?Végeredmény
- b) Hogyan módosul a válasz, ha a gáz betöltése után az elválasztó falat rögtön kivesszük?ÚtmutatásAlkalmazzuk az I. főtételt. A gáz fajhőjét tekintsük állandónak.Végeredmény
- a) Mennyi lesz a végső egyensúlyi hőmérséklet?
- Kondenzált (folyadék vagy szilárd) anyagok egyik közelítő állapotegyenlete Mi az és paraméterek jelentése?Végeredménytérfogatnál érvényes izotermikus kompresszibilitás és hőtágulási együttható.
- Szilárd testek hőtágulási együtthatója, illetve izotermikus kompresszibilitása alacsony hőmérsékleten az alábbi összefüggésekkel adható meg: ( és állandók). Határozzuk meg a szilárd test ilyenkor érvényes állapotegyenletét!ÚtmutatásIntegráljuk a fenti mennyiségek definíciós egyenletét!Végeredményahol állandó.
- Fejezzük ki a különbséget mol Van der Waals-gáz esetén a hőmérséklet, a térfogat és a hőtágulási együttható segítségével!ÚtmutatásHasználjuk fel az általános egyenletet, a Van der Waals-gáz belső energiájára vonatkozó összefüggést és a hőtágulási együttható definícióját.Végeredmény