Termodinamika példák - Gázcsere tartályok közt
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Kinetikus gázelmélet, transzport |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Két azonos térfogatú tartály kacsolódik egymáshoz, a szabad úthosszhoz képest kisméretű nyíláson keresztül. Az egyikben nyomású, a másikban kétszer akkora nyomású hidrogéngáz van. A gázok hőmérséklete azonos és időben állandó. A kinetikus gázelmélet segítségével mutassuk ki, hogy a két tartályban azonos egyensúlyi nyomás alakul ki!
Megoldás
Amikor a gázcsere kis lyukon keresztül valósul meg a tartályok között, feltehetjük, hogy a gáz egy-egy tartályon belül végig egyensúlyi állapotban marad. Ha a lyuk mérete sokkal kisebb az átlagos szabad úthossznál, akkor a rajta keresztül időegység alatt távozó molekulák száma megegyezik azzal, amit a gáz kinetikus elméletében a nyomás tárgyalásakor a tartály falának ugyanakkora felületét időegység alatt érő molekulák számára kapunk (). A molekulák száma az egyes tartályokban időben változik, ezt általánosan differenciálegyenlet-rendszerrel írhatjuk le:
ahol az egyes tartályokat zárójelbe tett számmal indexeltük, de a molekulák átlagos sebessége a két tartályban az azonos , hiszen a két tartály hőmérséklete és töltőanyaga is azonos.
Az anyagmegmaradás értelmében a második tartályban levő molekulák száma , aminek értelmében megváltozása is kifejezhető az előző mennyiségekkel:
Felhasználva ezt és definíciót, ismét szétválasztható differenciálegyenletet kapunk:
Egyensúly esetén , azaz :
amiből
Analóg módon kapjuk, hogy egyensúlyban , azaz a két tartályban megegyezik a gáz sűrűsége, a feladatkiírás szerint hőmérséklete is, így nyomása
Speciálisan a feladat szerint és , azaz , ezeket összevetve a kialakuló egyensúlyi nyomás .
Kiegészítés
A felírt
differenciálegyenlet megoldása
felírásban már triviális:
és kezdeti feltételre illesztése . Az első tartályban levő részecskék száma exponenciálisan lecsengve közelít az egyensúlyi értékhez:
Diszkusszió
Ha térfogatot végtelennek tekintjük, akkor a gáz szökésének speciális esetét kapjuk: :