Termodinamika példák - Ideális gáz részecskéinek energia szerinti eloszlása
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Termodinamika - Kinetikus gázelmélet, transzportfolyamatok |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Az sebességeloszlási függvényből a összefüggés felhasználásával vezessük le az energia-eloszlási függvényt, ahol azt mutatja meg, hogy az összes molekula hányadrésze rendelkezik és közötti mozgási energiával! Mekkora a legvalószínűbb energia és mennyi az átlagos kinetikus energia?
Megoldás
Az előző feladatban taglaltaknak megfelelően az
Maxwell-féle sebességeloszlás-függvény szigorúan véve egy valószínűségi sűrűségfüggvény, a legvalószínűbb sebesség és állandókkal. Ahhoz, hogy az energia szerinti eloszlást (matematikailag ismét csak sűrűségfüggvényt) megkapjuk, egy mértéktranszformációt kell végrehajtanunk.
Ez fizikailag azt jelenti, hogy felírjuk a gázmolekulák sebességintervallumba eső hányadát és ezt megfeleltetjük a energiaintervallumnak:
ahol az intervallum kezdőpontja a
sebesség--energia-összefüggésből, hossza pedig ebből differenciálás útján kapható:
Behelyettesítés után:
azaz
ahol a legvalószínűbb sebességhez tartozó energia és .
Mivel pozitív értékkészletű, -ban és -ben lecseng, azért extrémuma egyben a -lal jelölt legvalószínűbb energia:
A fenti kifejezésben csak a kerek zárójelben levő rész adhat nulla értékű tényezőt, ennek a tényezőnek a megoldása a legvalószínűbb energia, ami éppen a legvalószínűbb sebességhez tartozó energiának a fele:
Az átlagos energiát az függvény első momentumaként számíthatjuk:
Az integrál parciális integrálással (első tényezőt deriváljuk, másodikat integráljuk) kiértékelhető alakra hozható:
ahol az első tag a határokon eltűnik, az integrál pedig éppen a teljes energiaeloszlás-függvény integrálja, azaz egy normált sűrűségfüggvény integrálja, aminek értéke . Ezzel a részecskék átlagos energiája
az ekvipartíció tételével összhangban.