Termodinamika példák - Gáz szökése
A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Stippinger (vitalap | szerkesztései) 2013. március 30., 18:31-kor történt szerkesztése után volt.
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Termodinamika - Kinetikus gázelmélet, transzportfolyamatok |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- térfogatú, vékonyfalú tartályban ideális gáz van, az edényt légüres tér veszi körül.
- a) Hogyan változik az idő függvényében az edényben lévő gáz részecskeszáma, ha a tartály falán igen kicsi, területű lyuk van?
- b) Határozzuk meg azt az időtartamot, amely alatt a gáz nyomása felére csökken!
- Feltesszük, hogy a gáz kiáramlása lassú, így a gáz egyensúlyi állapotát a folyamat nem zavarja, továbbá a lyuk mérete sokkal kisebb, mint a szabad úthossz, tehát a lyuk területére is érvényes az az összefüggés, hogy az edény falának időegység alatt nekiütköző molekulák szána ( a molekulák átlagsebessége). A hőmérséklet mindvégig .
Megoldás
Amikor a gáz kis lyukon keresztül szökik a tartályból, feltehetjük, hogy végig egyensúlyi állapotban marad. A lyukon keresztül időegység alatt távozó molekulák száma pedig megegyezik azzal, amit a gáz kinetikus elméletében a nyomás tárgyalásakor az edény falának egységnyi felületét időegység alatt érő molekulák számára kapunk. Mivel a molekulák száma időben változik, ezért differenciálegyenletet kapunk a tartályban lévő molekulák időfüggő sűrűségére:
A kapott differenciálegyenlet a változók szétválasztással megoldható:
ahol a folyamat karakterisztikus ideje.
- (a) A tartályban lévő molekulák száma az idő függvényében:
- (b) A molekulák számának felezési idejét
egyenletből számítjuk ki: