Termodinamika példák - Ideális gáz részecskéinek energia szerinti eloszlása

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Stippinger (vitalap | szerkesztései) 2013. április 26., 11:25-kor történt szerkesztése után volt.

Navigáció Pt·1·2·3
Kísérleti fizika 3. gyakorlat
Gyakorlatok listája:
  1. Kinetikus gázelmélet, transzport
  2. Állapotváltozás, I. főtétel
  3. Fajhő, Körfolyamatok
  4. Entrópia, II. főtétel
  5. Homogén rendszerek
  6. Fázisátalakulások
  7. Kvantummechanikai bevezető
Kinetikus gázelmélet, transzport
Feladatok listája:
  1. Id. g. nyomása belső energiával
  2. Stern-kísérlet
  3. Energia szerinti eloszlás
  4. Vákuum
  5. Diffúzió és belső súrlódás
  6. Gáz szökése
  7. Gázcsere tartályok közt
  8. Gázcsere két gázzal
  9. Lineáris hőmérsékletprofil
  10. Jég fagyása
  11. Hővezetés
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. Az \setbox0\hbox{$F(v)$}% \message{//depth:\the\dp0//}% \box0% sebességeloszlási függvényből a \setbox0\hbox{$w=mv^2/2$}% \message{//depth:\the\dp0//}% \box0% összefüggés felhasználásával vezessük le az \setbox0\hbox{$f(w)$}% \message{//depth:\the\dp0//}% \box0% energia-eloszlási függvényt, ahol \setbox0\hbox{$f(w)$}% \message{//depth:\the\dp0//}% \box0% azt mutatja meg, hogy az összes molekula hányadrésze rendelkezik \setbox0\hbox{$w$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$w+\mathrm{d}w$}% \message{//depth:\the\dp0//}% \box0% közötti mozgási energiával! Mekkora a legvalószínűbb \setbox0\hbox{$w_0$}% \message{//depth:\the\dp0//}% \box0% energia és mennyi az átlagos kinetikus energia?

Megoldás

Az előző feladatban taglaltaknak megfelelően az

\[ F(v) = A \left(\frac{v}{v_0}\right)^2 \exp\left\{ -\left(\frac{v}{{v}_{0}}\right)^2 \right\} \]

Maxwell-féle sebességeloszlás-függvény szigorúan véve egy valószínűségi sűrűségfüggvény, \setbox0\hbox{$v_0=\sqrt{\frac{2kT}{\mu}}$}% \message{//depth:\the\dp0//}% \box0% a legvalószínűbb sebesség és \setbox0\hbox{$A=\frac{4}{v_0\sqrt{\pi}}$}% \message{//depth:\the\dp0//}% \box0% a normáló nényező. Az energia szerinti eloszlás (matematikailag ismét csak sűrűségfüggvény) kiszámításához, egy mértéktranszformációt kell végrehajtanunk.

Ez fizikailag azt jelenti, hogy felírjuk a gázmolekulák \setbox0\hbox{$[v,v+\mathrm{d}v)$}% \message{//depth:\the\dp0//}% \box0% sebességintervallumba eső hányadát és ezt megfeleltetjük a \setbox0\hbox{$[w,w+\mathrm{d}w)$}% \message{//depth:\the\dp0//}% \box0% energiaintervallumnak:

\[ F(v)\,\mathrm{d}v = f(w)\,\mathrm{d}w, \]

ahol az intervallum kezdőpontja a

\[ w = \frac{1}{2}\mu {v}^{2} \qquad\Leftrightarrow\qquad v=\sqrt{\frac2\mu}\sqrt{w} \]

sebesség–energia-összefüggésből, hossza pedig ebből differenciálás útján kapható:

\[ \frac{\mathrm{d}v}{\mathrm{d}w} = \sqrt{\frac2\mu} \frac1{2\sqrt{w}} \qquad\Rightarrow\qquad \mathrm{d}v=\frac{\mathrm{d}w}{\sqrt{2\mu w}}. \]

Behelyettesítés után:

\[ f\left(w\right)\,\mathrm{d}w = F(v)\,\mathrm{d}v     = A \frac{w}{w_v} \exp\left\{ -\frac{w}{w_v} \right\} \frac{1}{\sqrt{2\mu w}}\,\mathrm{d}w,\]

azaz

\[f\left(w\right) = B \sqrt{w} \exp\left\{ -\frac{w}{w_v} \right\} ,\]

ahol \setbox0\hbox{$w_v=\frac12 \mu v_0^2=kT$}% \message{//depth:\the\dp0//}% \box0% a legvalószínűbb sebességhez tartozó energia és \setbox0\hbox{$B=\frac{A}{w_v\sqrt{2\mu}}$}% \message{//depth:\the\dp0//}% \box0% normáló tényező.

Mivel \setbox0\hbox{$f(w)$}% \message{//depth:\the\dp0//}% \box0% pozitív értékkészletű, \setbox0\hbox{$0$}% \message{//depth:\the\dp0//}% \box0%-ban és \setbox0\hbox{$\infty$}% \message{//depth:\the\dp0//}% \box0%-ben lecseng, azért extrémuma egyben a \setbox0\hbox{$w_0$}% \message{//depth:\the\dp0//}% \box0%-lal jelölt legvalószínűbb energia:

\[ \left.\frac{\mathrm{d}f(w)}{\mathrm{d}w}\right|_{w=w_0} = B \exp\left\{-\frac{w_0}{kT}\right\} \left(\frac1{2\sqrt{w_0}}-\frac{\sqrt{w_0}}{kT}\right) = 0. \]

A kifejezés gyöke a legvalószínűbb energia, a kerek zárójeles részből kapjuk, és éppen a legvalószínűbb sebességhez tartozó energia fele:

\[ w_0 = \frac12 kT = \frac12 w_v. \]

Az átlagos energia az \setbox0\hbox{$f(w)$}% \message{//depth:\the\dp0//}% \box0% függvény első momentuma:

\[ \langle w\rangle = \int_0^\infty w f(w)\,\mathrm{d}w     = B \int_0^\infty w^{\frac32} \exp\left\{ -\frac{w}{kT} \right\} \,\mathrm{d}w. \]

Ez parciális integrálással (első tényezőt deriváljuk, másodikat integráljuk) értékelhető ki:

\[ \langle w\rangle = \left[-B \, kT \, w^{\frac32} \exp\left\{ -\frac{w}{kT} \right\} \right]_0^\infty - \frac32(-kT) \int_0^\infty B \sqrt{w}\exp\left\{ -\frac{w}{kT} \right\} \,\mathrm{d}w, \]

az első tag a határokon eltűnik, az integrál pedig a teljes energiaeloszlás-függvény – egy normált sűrűségfüggvény – integrálja, azaz értéke \setbox0\hbox{$1$}% \message{//depth:\the\dp0//}% \box0%. Ezzel a részecskék átlagos energiája az ekvipartíció tételével összhangban

\[ \langle w\rangle = \frac32 kT. \]