Termodinamika - Állapotváltozás, I. főtétel

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Stippinger (vitalap | szerkesztései) 2013. május 4., 22:25-kor történt szerkesztése után volt.

Navigáció Pt·1·2·3
Kísérleti fizika 3. gyakorlat
Gyakorlatok listája:
  1. Kinetikus gázelmélet, transzport
  2. Állapotváltozás, I. főtétel
  3. Fajhő, Körfolyamatok
  4. Entrópia, II. főtétel
  5. Homogén rendszerek
  6. Fázisátalakulások
  7. Kvantummechanikai bevezető
Állapotváltozás, I. főtétel
Feladatok listája:
  1. Állapotváltozások diagramjai
  2. Belső energia állapotváltozásokban
  3. Energiák fajhőviszonnyal
  4. Energiaváltozások diagramból
  5. Ideális gáz kompresszibilitásai
  6. Nyomás hőmérsékletfüggése
  7. Fűtött szoba belső energiája
  8. Térfogatváltozás fajhőviszonnyal
  9. Van der Waals-gáz egyensúlya
  10. Közelítő állapotegyenlet
  11. Állapotegy. mérh. menny.-ből
  12. Van der Waals-gáz fajhőkülönbsége
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Ismert összefüggések

A termodinamika I. főtétele

\[ \mathrm{d}U = \delta Q + \delta W, \]

ahol \setbox0\hbox{$\mathrm{d}U$}% \message{//depth:\the\dp0//}% \box0% a rendszer belső energiájának megváltozása, \setbox0\hbox{$\delta Q$}% \message{//depth:\the\dp0//}% \box0% a rendszer által felvett hő, \setbox0\hbox{$\delta W$}% \message{//depth:\the\dp0//}% \box0% a rendszeren a környezet által végzett makroszkopikus munka, például \setbox0\hbox{$\delta W_\text{mech} = -p\,\mathrm{d}V$}% \message{//depth:\the\dp0//}% \box0%.

A Van der Waals-gáz állapotegyenlete

\[ \left(p+n^2\frac{a}{V^2}\right)(V-nb) = nRT, \]

ahol \setbox0\hbox{$p_k = n^2\frac{a}{V^2}$}% \message{//depth:\the\dp0//}% \box0% kohéziós nyomás, \setbox0\hbox{$V-nb$}% \message{//depth:\the\dp0//}% \box0% tiszta térfogat, \setbox0\hbox{$a$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$b$}% \message{//depth:\the\dp0//}% \box0% kísérletileg meghatározható állandók.

Feladatok

  1. Készítsen vázlatos ábrát ideális gáz
    • a) izochor,
    • b) izobár,
    • c) izoterm és
    • d) adiabatikus
    állapotváltozásáról \setbox0\hbox{$p-V$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$T-V$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$T-p$}% \message{//depth:\the\dp0//}% \box0% koordináta-rendszerekben úgy, hogy a kiindulási állapot minden esetben ugyanaz legyen!
  2. Ábrázolja vázlatosan ideális gáz
    • a) izochor,
    • b) izobár,
    • c) izoterm és
    • d) adiabatikus
    állapotváltozásánál a belső energiának a hőmérséklettől-, térfogattól- és a nyomástól való függését! Legyen a belső energia az ordináta, és minden folyamatnál legyen ugyanaz a kiindulási állapot!
  3. Állapítsuk meg, milyen összefüggés van egy ideális gáz által állandó nyomáson végzett \setbox0\hbox{$\Delta W$}% \message{//depth:\the\dp0//}% \box0% munka, a gázzal közölt \setbox0\hbox{$\Delta Q$}% \message{//depth:\the\dp0//}% \box0% hőmennyiség és a \setbox0\hbox{$\Delta U$}% \message{//depth:\the\dp0//}% \box0% belső energia-változás között, ha a \setbox0\hbox{$\gamma$}% \message{//depth:\the\dp0//}% \box0% fajhőviszony ismert!
  4. Ha egy rendszert az ábrán látható 1 úton viszünk az \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% állapotból a \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0% állapotba, \setbox0\hbox{$100\,\rm{J}$}% \message{//depth:\the\dp0//}% \box0% hőt vesz fel, miközben \setbox0\hbox{$30\,\rm{J}$}% \message{//depth:\the\dp0//}% \box0% munkát végez.
    Három útvonal p-V diagramban.svg
    • a) Mennyi hőt vesz fel a rendszer az \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0% állapotok közt a 2 úton, ha közben \setbox0\hbox{$10\,\rm{J}$}% \message{//depth:\the\dp0//}% \box0% munkát végez?
    • b) Ha \setbox0\hbox{$20\,\rm{J}$}% \message{//depth:\the\dp0//}% \box0% munkával vihetjük a rendszert \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0%-ből \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0%-ba a 3 út mentén, mennyi a közben leadott hő?
  5. Mutassa meg, hogy ideális gáz izoterm összenyomásánál a kompresszibilitás \setbox0\hbox{$\kappa_T=\frac1p$}% \message{//depth:\the\dp0//}% \box0%, míg adiabatikus összenyomásnál \setbox0\hbox{$\kappa_{\text{ad}}=\frac{1}{\gamma p}$}% \message{//depth:\the\dp0//}% \box0%, ahol \setbox0\hbox{$\gamma =\frac{C_p}{C_V}$}% \message{//depth:\the\dp0//}% \box0%.
  6. A \setbox0\hbox{$p=p(T,V)$}% \message{//depth:\the\dp0//}% \box0% állapotegyenlet ismeretében fejezzük ki a \setbox0\hbox{$\displaystyle \left(\frac{\partial p}{\partial T}\right)_V$}% \message{//depth:\the\dp0//}% \box0% mennyiséget a \setbox0\hbox{$\beta_p$}% \message{//depth:\the\dp0//}% \box0% hőtágulási együttható és a \setbox0\hbox{$\kappa_T$}% \message{//depth:\the\dp0//}% \box0% izotermikus kompresszibilitás segítségével!
  7. Egy \setbox0\hbox{$V$}% \message{//depth:\the\dp0//}% \box0% térfogatú szobában befűtünk. A szobában a hőmérséklet eközben állandó légköri nyomáson \setbox0\hbox{$T_1$}% \message{//depth:\the\dp0//}% \box0%-ről \setbox0\hbox{$T_2$}% \message{//depth:\the\dp0//}% \box0%-re nő. Mennyivel változik a szobában lévő levegő belső energiája?
  8. Egy kezdetben \setbox0\hbox{$V_1$}% \message{//depth:\the\dp0//}% \box0% térfogatú, \setbox0\hbox{$\gamma$}% \message{//depth:\the\dp0//}% \box0% fajhőviszonyú ideális gáz térfogatát \setbox0\hbox{$V_2$}% \message{//depth:\the\dp0//}% \box0%-re növeljük. A folyamatot egyszer adiabatikusan, másodszor pedig izotermikusan hajtjuk végre. Az első és második végállapotban a nyomások aránya \setbox0\hbox{$2$}% \message{//depth:\the\dp0//}% \box0%. Mekkora a \setbox0\hbox{$V_2$}% \message{//depth:\the\dp0//}% \box0% térfogat?
  9. Van der Waals-gázok belső energiájának térfogatfüggése az alábbi összefüggéssel adható meg:
    \[ U = c_V mT - \frac{m^2}{M^2}\frac{a}{V},\]
    ahol \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% a gáz tömege, \setbox0\hbox{$M$}% \message{//depth:\the\dp0//}% \box0% a móltömeg, \setbox0\hbox{$c_V$}% \message{//depth:\the\dp0//}% \box0% az állandó térfogaton mért fajhő, \setbox0\hbox{$a$}% \message{//depth:\the\dp0//}% \box0% állandó.
    Egy hőszigetelt tartályt rögzített, jó hővezető anyagból készített fal választ két részre, amelyekbe azonos tömegű Van der Waals-gázt vezettünk be. A kezdeti állapotjellemzők: \setbox0\hbox{$V_1$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$T_1$}% \message{//depth:\the\dp0//}% \box0%, illetve \setbox0\hbox{$V_2$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$T_2$}% \message{//depth:\the\dp0//}% \box0%.
    • a) Mennyi lesz a végső egyensúlyi hőmérséklet?
    • b) Hogyan módosul a válasz, ha a gáz betöltése után az elválasztó falat rögtön kivesszük?
  10. Kondenzált (folyadék vagy szilárd) anyagok egyik közelítő állapotegyenlete
    \[V= V_0(1-ap+bT).\]
    Mi az \setbox0\hbox{$a$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$b$}% \message{//depth:\the\dp0//}% \box0% paraméterek jelentése?
  11. Szilárd testek hőtágulási együtthatója, illetve izotermikus kompresszibilitása alacsony hőmérsékleten az alábbi összefüggésekkel adható meg:
    \[ \beta_p = \frac{3aT^3}{V},\qquad \kappa_T=\frac{b}{V} \]
    (\setbox0\hbox{$a$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$b$}% \message{//depth:\the\dp0//}% \box0% állandók). Határozzuk meg a szilárd test ilyenkor érvényes állapotegyenletét!
  12. Fejezzük ki a \setbox0\hbox{$C_p-C_V$}% \message{//depth:\the\dp0//}% \box0% különbséget \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% mol Van der Waals-gáz esetén a hőmérséklet, a térfogat és a \setbox0\hbox{$\beta_p$}% \message{//depth:\the\dp0//}% \box0% hőtágulási együttható segítségével!