Termodinamika példák - Nyomás hőmérsékletfüggése mérhető mennyiségekkel

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Stippinger (vitalap | szerkesztései) 2013. április 28., 17:02-kor történt szerkesztése után volt.

(eltér) ←Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Navigáció Pt·1·2·3
Kísérleti fizika 3. gyakorlat
Gyakorlatok listája:
  1. Kinetikus gázelmélet, transzport
  2. Állapotváltozás, I. főtétel
  3. Fajhő, Körfolyamatok
  4. Entrópia, II. főtétel
  5. Homogén rendszerek
  6. Fázisátalakulások
  7. Kvantummechanikai bevezető
Állapotváltozás, I. főtétel
Feladatok listája:
  1. Állapotváltozások diagramjai
  2. Belső energia állapotváltozásokban
  3. Energiák fajhőviszonnyal
  4. Energiaváltozások diagramból
  5. Ideális gáz kompresszibilitásai
  6. Nyomás hőmérsékletfüggése
  7. Fűtött szoba belső energiája
  8. Térfogatváltozás fajhőviszonnyal
  9. Van der Waals-gáz egyensúlya
  10. Közelítő állapotegyenlet
  11. Állapotegy. mérh. menny.-ből
  12. Van der Waals-gáz fajhőkülönbsége
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. A \setbox0\hbox{$p=p(T,V)$}% \message{//depth:\the\dp0//}% \box0% állapotegyenlet ismeretében fejezzük ki a \setbox0\hbox{$\displaystyle \left(\frac{\partial p}{\partial T}\right)_V$}% \message{//depth:\the\dp0//}% \box0% mennyiséget a \setbox0\hbox{$\beta_p$}% \message{//depth:\the\dp0//}% \box0% hőtágulási együttható és a \setbox0\hbox{$\kappa_T$}% \message{//depth:\the\dp0//}% \box0% izotermikus kompresszibilitás segítségével!

Megoldás

Az izobár hőtágulási együttható és az izoterm kompresszibilitás rendre

\[ \beta_p = \frac 1 V{\left(\frac{\partial V}{\partial T}\right)}_ p, \qquad  \kappa_T = -\frac 1 V{\left(\frac{\partial V}{\partial p}\right)}_ T.\]

Izobár folyamatban

\[ \mathrm{d}p = 0 = \left(\frac{\partial p}{\partial T}\right)_V \,\mathrm{d}T + \left(\frac{\partial p}{\partial V}\right)_T \,\mathrm{d}V, \]

és a \setbox0\hbox{$\mathrm{d}T$}% \message{//depth:\the\dp0//}% \box0%-vel való formális osztás során jelölnünk kell az izobár állapotváltozást:

\[ {\left(\frac{\partial p}{\partial T}\right)}_V    = -{\left(\frac{\partial p}{\partial V}\right)}_T {\left(\frac{\partial V}{\partial T}\right)}_p    = \frac 1{V\kappa_T}\cdot V\beta_p    = \frac{\beta_p}{\kappa_ T}. \]

Megjegyzés

Gyorsabban juthatunk el az eredményhez izochor folyamattal:

\[ \mathrm{d}V = 0 = \left(\frac{\partial V}{\partial T}\right)_p \,\mathrm{d}T + \left(\frac{\partial V}{\partial p}\right)_T \,\mathrm{d}p    = V\beta_p \,\mathrm{d}T - V\kappa_T \,\mathrm{d}p, \]

formálisan osztunk \setbox0\hbox{$\mathrm{d}T$}% \message{//depth:\the\dp0//}% \box0%-vel, és jelöljük kell az izochor állapotváltozást:

\[ {\left(\frac{\partial p}{\partial T}\right)}_V = \frac{\beta_p}{\kappa_T}. \]