Elektrosztatika példák - Párhuzamos végtelen síklapok potenciáltere

A Fizipedia wikiből
Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 2.
Gyakorlatok listája:
  1. Erőhatások elektromos erőtérben, elektromos térerősség
  2. Elektromos potenciál
  3. Dielektrikumok, Gauss-tétel. Kapacitás, kondenzátorok
  4. Kapacitás, kondenzátorok. Elrendezések energiája
  5. Vezetőképesség, áramsűrűség
  6. Biot-Savart törvény, gerjesztési törvény
  7. Erőhatások mágneses térben
  8. Mágneses térerősség. Kölcsönös és öninduktivitás
  9. Az indukció törvénye, mozgási indukció
  10. Mágneses tér energiája. Váltakozó áram, eltolási áram
Elektrosztatika - Elektromos potenciál
Feladatok listája:
  1. Potenciál számítása a térerősségből
  2. Elektromos térerősség kiszámítása a potenciálból
  3. Töltésen végzett munka
  4. A potenciál változása egyenletesen töltött körlap tengelye mentén
  5. Párhuzamos végtelen síklapok potenciáltere
  6. Összeolvadt esőcseppek potenciálja
  7. Fém gömbhéjjal koncentrikusan körülvett töltött fémgömb esetén kialakuló potenciáltér
  8. Töltéssel ellátott koaxiális fémhengerek közötti potenciálkülönbség
  9. A potenciál töltött fémszállal koaxiális fémhenger esetén
  10. Vezető félgömb potenciálja a gömb középpontjában
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. Két párhuzamos, nagy kiterjedésű vezető sík egyike földelt, a másik felületi töltéssűrűsége \setbox0\hbox{$\omega_{1}$}% \message{//depth:\the\dp0//}% \box0%. A lemezek távolsága \setbox0\hbox{$d$}% \message{//depth:\the\dp0//}% \box0%.
    a) Mekkora a lemezek közötti potenciálkülönbség?
    b) Mekkora lesz a potenciálkülönbség, ha a lemezekkel párhuzamosan, tőlük egyenlő távolságra, egy \setbox0\hbox{$\omega_{2}$}% \message{//depth:\the\dp0//}% \box0% felületi töltéssűrűségű harmadik lemezt helyezünk?

Megoldás


a) A földelt lemezen \setbox0\hbox{$-\omega_{1}$}% \message{//depth:\the\dp0//}% \box0% felületi töltéssűrűség alakul ki. A lemezek közötti térerősség nagysága:

\[E=\frac{\omega_{1}}{\epsilon_{0}}\]

Ebből a lemezek közötti potenciálkülönbség:

\[ U =\frac{\omega_{1}}{\epsilon_{0}}\cdot d \]

b)
Ebben az esetben a földelt lemezen kialakuló felületi töltéssűrűség: \setbox0\hbox{$\omega_{3} = -(\omega_{1}+\omega_{2})$}% \message{//depth:\the\dp0//}% \box0% hiszen a földelt lemez helyén, a másik két lemez által okozott térerősség húzza fel a töltéseket a földből.Ebből a térerősség földelt és a betett lemezek között:

\[E_{1}=\frac{\omega_{1}}{2\cdot\epsilon_{0}}+\frac{\omega_{2}}{2\cdot\epsilon_{0}}-\frac{\omega_{3}}{2\cdot\epsilon_{0}}=\frac{\omega_{1}+\omega_{2}}{\epsilon_{0}}\]

A betett és a másik lemez között a tér pedig:

\[E_{2}=\frac{\omega_{1}}{2\cdot\epsilon_{0}}-\frac{\omega_{2}}{2\cdot\epsilon_{0}}-\frac{\omega_{3}}{2\cdot\epsilon_{0}}=\frac{\omega_{1}}{\epsilon_{0}}\]

Ebből a potenciál különbség:

\[U = U_{1}+U_{2} = \frac{\omega_{1}+\omega_{2}}{\epsilon_{0}}\cdot \frac{d}{2} + \frac{\omega_{1}}{\epsilon_{0}}\cdot \frac{d}{2} = \frac{2\omega_{1}+\omega_{2}}{\epsilon_{0}}\cdot \frac{d}{2} \]