„Termodinamika példák - Ideális gáz állapotváltozása egyenlettel” változatai közötti eltérés

A Fizipedia wikiből
9. sor: 9. sor:
 
}}
 
}}
 
== Feladat ==
 
== Feladat ==
</noinclude><wlatex># Melegszik vagy lehűl az $1\,\mathrm{mol}$ ideális gáz, ha a $V=k/\sqrt{p}$ összefüggés ($k$ állandó) szerint tágul ki? Mekkora a gáz mólhője ebben a folyamatban, ha állandó térfogaton mért mólhője $C_V$?</wlatex><includeonly><wlatex>{{Végeredmény|content=Lehűl, $$C=C_V-R$$}}</wlatex></includeonly><noinclude>
+
</noinclude><wlatex># Melegszik vagy lehűl az $1\,\mathrm{mol}$ ideális gáz, ha a $V=k/\sqrt{p}$ összefüggés ($k$ állandó) szerint tágul ki? Mekkora a gáz mólhője ebben a folyamatban, ha állandó térfogaton mért mólhője $C_V$?</wlatex><includeonly><wlatex>{{Útmutatás|content=A fajhő általános definícióját használjuk, majd az állapotváltozás „pályáját” megadó egyenlet segítségével keressük meg a $V=V(T)$ függvényt és abból a $\mathrm{d}V/\mathrm{d}T$ hányadost!}}{{Végeredmény|content=Lehűl, $$C=C_V-R$$}}</wlatex></includeonly><noinclude>
 
== Megoldás ==
 
== Megoldás ==
 
<wlatex>A termodinamika első főtétele szerint $$\delta Q = \mathrm{d}U+p\,\mathrm{d}V,$$
 
<wlatex>A termodinamika első főtétele szerint $$\delta Q = \mathrm{d}U+p\,\mathrm{d}V,$$
18. sor: 18. sor:
 
$$C n \mathrm{d}T = C_V n \mathrm{d}T+
 
$$C n \mathrm{d}T = C_V n \mathrm{d}T+
 
\left[p+\frac{\partial U}{\partial V}\right]_T\mathrm{d}V.$$
 
\left[p+\frac{\partial U}{\partial V}\right]_T\mathrm{d}V.$$
Az ideális gázra speciálisan a belső energia térfogat szerinti parciális deriváltja nulla. A térfogat infinitezimális megváltozását a folyamatot jellemző úton kifejezhetjük a hőmérséklettel:
+
Az ideális gázra speciálisan a belső energia térfogat szerinti parciális deriváltja nulla. A térfogat infinitezimális megváltozását a folyamatot jellemző pályán kifejezhetjük a hőmérséklettel:
 
$$C n \mathrm{d}T = C_V n \mathrm{d}T+
 
$$C n \mathrm{d}T = C_V n \mathrm{d}T+
 
p\left(\frac{\mathrm{d} V}{\mathrm{d} T}\right)_{\substack{\text{állapot-}\\ \text{változás}}}\mathrm{d}T.$$
 
p\left(\frac{\mathrm{d} V}{\mathrm{d} T}\right)_{\substack{\text{állapot-}\\ \text{változás}}}\mathrm{d}T.$$

A lap 2012. október 9., 20:18-kori változata

Navigáció Pt·1·2·3
Kísérleti fizika 3. gyakorlat
Gyakorlatok listája:
  1. Kinetikus gázelmélet, transzport
  2. Állapotváltozás, I. főtétel
  3. Fajhő, Körfolyamatok
  4. Entrópia, II. főtétel
  5. Homogén rendszerek
  6. Fázisátalakulások
  7. Kvantummechanikai bevezető
Termodinamika - Fajhő, Körfolyamatok
Feladatok listája:
  1. Id. g. állapotváltozása egyenlettel
  2. Id. g. állandó mólhőjű folyamatai
  3. Id. g. állapotváltozása p-V összefüggéssel
  4. Id. g. körfolyamatai és
  5. munkája
  6. Id. g. egy körfolyamata izotermával
  7. Carnot-hűtőgép
  8. Id. g. egy körfolyamata adiabatával
  9. Id. g. körfolyamata: izob. és adiab.
  10. Dinamikus fűtés hőszivattyúval
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. Melegszik vagy lehűl az \setbox0\hbox{$1\,\mathrm{mol}$}% \message{//depth:\the\dp0//}% \box0% ideális gáz, ha a \setbox0\hbox{$V=k/\sqrt{p}$}% \message{//depth:\the\dp0//}% \box0% összefüggés (\setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% állandó) szerint tágul ki? Mekkora a gáz mólhője ebben a folyamatban, ha állandó térfogaton mért mólhője \setbox0\hbox{$C_V$}% \message{//depth:\the\dp0//}% \box0%?

Megoldás

A termodinamika első főtétele szerint
\[\delta Q = \mathrm{d}U+p\,\mathrm{d}V,\]

ahol a belső energiát a hőmérséklet és a térfogat függvényeként fogjuk fel (\setbox0\hbox{$U(T,V)$}% \message{//depth:\the\dp0//}% \box0%), ezzel:

\[\delta Q = \left(\frac{\partial U}{\partial T}\right)_V\mathrm{d}T+ \left(\frac{\partial U}{\partial V}\right)_T\mathrm{d}V+ p\,\mathrm{d}V.\]

Az utolsó két tag sorrendjét felcserélve általánosan levezethető, hogy

\[C n \mathrm{d}T = C_V n \mathrm{d}T+ \left[p+\frac{\partial U}{\partial V}\right]_T\mathrm{d}V.\]

Az ideális gázra speciálisan a belső energia térfogat szerinti parciális deriváltja nulla. A térfogat infinitezimális megváltozását a folyamatot jellemző pályán kifejezhetjük a hőmérséklettel:

\[C n \mathrm{d}T = C_V n \mathrm{d}T+ p\left(\frac{\mathrm{d} V}{\mathrm{d} T}\right)_{\substack{\text{állapot-}\\ \text{változás}}}\mathrm{d}T.\]

Az ideális gáz \setbox0\hbox{$pV=nRT$}% \message{//depth:\the\dp0//}% \box0% állapotegyenletéből és a folyamatot jellemző \setbox0\hbox{$p=\frac{k^2}{V^2}$}% \message{//depth:\the\dp0//}% \box0% egyenletből a térfogat és a folyamatot jellemző deriváltja számítható:

\[V=\frac{k^2}{nRT}\qquad\text{és}\qquad\frac{\mathrm{d}V}{\mathrm{d}T}=-\frac{k^2}{nRT^2}=-\frac{V}{T}\]

Ezt visszaírva a folyamatot jellemző \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% fajhő kifejezésébe azt kapjuk, hogy

\[C n \mathrm{d}T = \left(C_V n - \frac{pV}{T}\right)\mathrm{d}T = (C_V n - nR)\mathrm{d}T,\]

ahonnan a fajhő leolvasható:

\[ C = C_V - R. \]