Navigáció Pt·1·2·3
|
Kísérleti fizika gyakorlat 2.
|
Gyakorlatok listája:
- Erőhatások elektromos erőtérben, elektromos térerősség
- Elektromos potenciál
- Dielektrikumok, Gauss-tétel. Kapacitás, kondenzátorok
- Kapacitás, kondenzátorok. Elrendezések energiája
- Vezetőképesség, áramsűrűség
- Biot-Savart törvény, gerjesztési törvény
- Erőhatások mágneses térben
- Mágneses térerősség. Kölcsönös és öninduktivitás
- Az indukció törvénye, mozgási indukció
- Mágneses tér energiája. Váltakozó áram, eltolási áram
|
Elektrosztatika - Erőhatások elektromos erőtérben, elektromos térerősség
|
Feladatok listája:
- Négyszög sarkaiba helyezett ponttöltések elektromos tere
- Két töltést összekötő egyenes mentén az elektromos tér
- Körvezető tengelye mentén az elektromos tér
- Egyenletesen töltött körlap tengelye mentén az elektromos tér
- Végtelen hosszú egyenes fonál elektromos tere 1.
- Végtelen hosszú egyenes fonál elektromos tere 2.
- Végtelen sík elektromos tere
- Két, egymásra merőleges végtelen sík elektromos tere
- Homogén térfogati töltéssűrűségű töltött gömb elektromos tere
- Földelt gömbhéjjal koncentrikusan körülvett egyenletesen töltött gömb elektromos tere
- Egyenletesen töltött gömbben lévő, gömb alakú üreg elektromos tere
- Végtelen hosszú egyenes fonálpár elektromos tere
- Az elektromos térerősség helyfüggő lineáris töltéssűrűségű szigetelő gyűrű tengelye mentén
- Vezető gömbhéjjal koncentrikusan körülvett egyenletesen töltött gömb elektromos tere
|
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064
|
Feladat
- Milyen erőteret hoz létre két, egymásra merőleges végtelen sík, ha rajtuk egyenletesen elosztva és töltéssűrűség van?
Megoldás
Az töltéssűrűségű végtelen síklap körül kialakuló elektromos teret ismerjük a Végtelen sík elektromos tere feladat alapján:
Tegyük fel, hogy az töltéssűrűségű síklap az síkban, míg a töltéssűrűségű síklap az síkban van. Ekkor az töltéssűrűségű síklap tere az tengellyel párhuzamos, helyfüggését az alábbi összefüggés írja le:
Míg a sík tere a következőképp alakul:
Az eredő tér ezek szuperpozíciója:
Ahol és az és irányú egységvektorok.