Elektrosztatika példák - Végtelen hosszú egyenes fonál elektromos tere 2.
Feladat
- Végtelen hosszú egyenes fonálon a lineáris töltéssűrűség . Határozzuk meg a térerősséget a fonáltól távolságra a Gauss-tétel segítségével!
Megoldás
A fonalat vegyük körbe egy hosszúságú, sugarú hengerrel, és írjuk fel erre a Gauss-tételt:
A rendszer hengerszimmetriája miatt az elektromos tér mindenütt merőleges a vonaltöltésre, továbbá feltételezhetjük, hogy a vonaltöltéstől adott távolságra elhelyezkedő pontokban a térerősség nagysága állandó. A Gauss törvényben szereplő térerősség henger felületre vett integrálja tehát a következőképp egyszerűsíthető:
-A térerősségnek sehol sincs a henger alapjaira merőleges komponense, így a henger alapjaira vett felületi integrál zérus.
-A henger palástján a térerősség mindenütt merőleges a felületre, abból kifelé mutat, így a felületre vett integrálban szereplő skalárszorzat helyettesíthető a vektorok abszolút értékének szorzatával:
-Mivel a térerősség nagysága a hengerpaláston mindenütt állandó, az integrálást helyettesíthetjük a teljes felület és a konstans térerősség szorzatával:
Ezek alapján az egyszerűsített Gauss törvény:
Ahol a felület által bezárt töltés. Kifejezve a térerősséget:
Megjegyzés: Az eredményt érdemes összevetni az előző feladat megoldásával, ahol a Gauss törvény helyett a Coulomb törvényt és a szuperpozíció elvét alkalmazva számoltuk ki a vonaltöltés terét. Láthatjuk, hogy a Gauss törvény alkalmazása jelentősen egyszerűsíti a számolást, ehhez azonban alaposan ki kellett használnunk a rendszer szimmetriáit. Ha a vizsgált töltéselrendezés sérti a fent kihasznált szimmetriákat, a Gauss törvény ilyen formában nem használható. Így például a véges hosszúságú vonaltöltés terének meghatározásakor célravezetőbb az előző példában alkalmazott integrál kiszámítása.