„Elektrosztatika - Elektromos potenciál” változatai közötti eltérés

A Fizipedia wikiből
4. sor: 4. sor:
 
| tárgynév    = Kísérleti fizika gyakorlat 2.
 
| tárgynév    = Kísérleti fizika gyakorlat 2.
 
| gyaksorszám = 2
 
| gyaksorszám = 2
| témakör    = Elektrosztatika - Elektromos potenciál|Elektromos potenciál  
+
| témakör    = Elektrosztatika - Elektromos potenciál
 
}}
 
}}
 
== Feladatok ==
 
== Feladatok ==
 
{{:Elektrosztatika példák - Potenciál térerősségből való kiszámolása}}{{Megoldás|link=Elektrosztatika példák - Potenciál térerősségből való kiszámolása}}
 
{{:Elektrosztatika példák - Potenciál térerősségből való kiszámolása}}{{Megoldás|link=Elektrosztatika példák - Potenciál térerősségből való kiszámolása}}
 
{{:Elektrosztatika példák - Elektromos térerősség potenciálból való kiszámolása}}{{Megoldás|link=Elektrosztatika példák - Elektromos térerősség potenciálból való kiszámolása}}
 
{{:Elektrosztatika példák - Elektromos térerősség potenciálból való kiszámolása}}{{Megoldás|link=Elektrosztatika példák - Elektromos térerősség potenciálból való kiszámolása}}

A lap 2013. április 28., 15:06-kori változata

Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 2.
Gyakorlatok listája:
  1. Erőhatások elektromos erőtérben, elektromos térerősség
  2. Elektromos potenciál
  3. Dielektrikumok, Gauss-tétel. Kapacitás, kondenzátorok
  4. Kapacitás, kondenzátorok. Elrendezések energiája
  5. Vezetőképesség, áramsűrűség
  6. Biot-Savart törvény, gerjesztési törvény
  7. Erőhatások mágneses térben
  8. Mágneses térerősség. Kölcsönös és öninduktivitás
  9. Az indukció törvénye, mozgási indukció
  10. Mágneses tér energiája. Váltakozó áram, eltolási áram
Elektrosztatika - Elektromos potenciál
Feladatok listája:
  1. Potenciál számítása a térerősségből
  2. Elektromos térerősség kiszámítása a potenciálból
  3. Töltésen végzett munka
  4. A potenciál változása egyenletesen töltött körlap tengelye mentén
  5. Párhuzamos végtelen síklapok potenciáltere
  6. Összeolvadt esőcseppek potenciálja
  7. Fém gömbhéjjal koncentrikusan körülvett töltött fémgömb esetén kialakuló potenciáltér
  8. Töltéssel ellátott koaxiális fémhengerek közötti potenciálkülönbség
  9. A potenciál töltött fémszállal koaxiális fémhenger esetén
  10. Vezető félgömb potenciálja a gömb középpontjában
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladatok

  1. Határozzuk meg az \setbox0\hbox{$ E=a ( y\overline{i}+x\overline{j} ) $}% \message{//depth:\the\dp0//}% \box0% elektromos erőtér potenciálját, ha \setbox0\hbox{$a=$}% \message{//depth:\the\dp0//}% \box0%állandó, \setbox0\hbox{$\overline{i}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\overline{j}$}% \message{//depth:\the\dp0//}% \box0% az \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$y$}% \message{//depth:\the\dp0//}% \box0% tengely irányába mutató egységvektorok!
  2. Határozzuk meg az elektromos térerősség vektorát, ha a potenciál:
    a) \setbox0\hbox{$U=a(x^2+y^2)$}% \message{//depth:\the\dp0//}% \box0%
    b) \setbox0\hbox{$U=axy$}% \message{//depth:\the\dp0//}% \box0%
    módon függ a koordinátáktól, ahol \setbox0\hbox{$a=$}% \message{//depth:\the\dp0//}% \box0%állandó!