„Elektrosztatika példák - Koaxilális hengerfelületek potenciáltere” változatai közötti eltérés
A Fizipedia wikiből
(Új oldal, tartalma: „<noinclude> Kategória:Kísérleti fizika gyakorlat 2. Kategória:Szerkesztő:Beleznai Kategória:Elektrosztatika {{Kísérleti fizika gyakorlat | tárgynév …”) |
|||
9. sor: | 9. sor: | ||
== Feladat == | == Feladat == | ||
</noinclude><wlatex>#Két végtelen hosszú koaxiális hengert egynemű töltéssel töltünk fel úgy, hogy a töltéssűrűség a külső hengeren $\omega_{2}$, a belsőn pedig $\omega_{1}$. A hengerek sugara $R_{1}$ és $R_{2}$. Határozzuk meg a hengerek közötti potenciálkülönbséget? | </noinclude><wlatex>#Két végtelen hosszú koaxiális hengert egynemű töltéssel töltünk fel úgy, hogy a töltéssűrűség a külső hengeren $\omega_{2}$, a belsőn pedig $\omega_{1}$. A hengerek sugara $R_{1}$ és $R_{2}$. Határozzuk meg a hengerek közötti potenciálkülönbséget? | ||
− | </wlatex><includeonly><wlatex>{{Útmutatás|content=Írjuk fel erre a Gauss-tételt a belső hengerre}}{{Végeredmény|content=$$\Delta U = \int_{R_{1}}^{R_{2}}\frac{\omega_{2}\cdot R_{1}}{\epsilon_{0}\cdot r}\cdot dr =\frac{\omega_{2}\cdot R_{1}}{\epsilon_{0}}\cdot \ln\left(\frac{R_{2}}{R_{1}}\right) $$}} | + | </wlatex><includeonly><wlatex>{{Útmutatás|content=Írjuk fel erre a Gauss-tételt a belső hengerre!}}{{Végeredmény|content=$$\Delta U = \int_{R_{1}}^{R_{2}}\frac{\omega_{2}\cdot R_{1}}{\epsilon_{0}\cdot r}\cdot dr =\frac{\omega_{2}\cdot R_{1}}{\epsilon_{0}}\cdot \ln\left(\frac{R_{2}}{R_{1}}\right) $$}} |
</wlatex></includeonly><noinclude> | </wlatex></includeonly><noinclude> | ||
== Megoldás == | == Megoldás == |
A lap 2013. április 28., 17:07-kori változata
Feladat
- Két végtelen hosszú koaxiális hengert egynemű töltéssel töltünk fel úgy, hogy a töltéssűrűség a külső hengeren , a belsőn pedig . A hengerek sugara és . Határozzuk meg a hengerek közötti potenciálkülönbséget?
Megoldás
Vegyünk egy igen hosszú ( ) sugarú hengert, amely körbe zárja a belső hengert, de sugara kisebb a külső henger sugránál. () Írjuk fel erre a Gauss-tételt:
Amiből:
A pontenciálkülönbség pedig: