Mechanika - Rezgő lemezen tapadás

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Gombkoto (vitalap | szerkesztései) 2014. január 28., 12:56-kor történt szerkesztése után volt.

(eltér) ←Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Rezgések I.
Feladatok listája:
  1. Rezgések pályaegyenlete
  2. Rugóra akasztott test
  3. Rezgés kezdeti feltételekkel
  4. Rezgés egyensúlyi helyzetből
  5. Rezgő testre rápottyanó
  6. Kosárba ejtett test
  7. Rugókra merőleges rezgés
  8. Inga kétféle rezgésideje
  9. Rezgés ferde rugóval
  10. Kiskocsik rugóval
  11. Függvényalak átalakítása
  12. Eredő rezgés adatai
  13. Adott eredő rezgés
  14. Azonos kitérés ideje
  15. Lebegés
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. (6.10.) Síklemez a rajta nyugvó testtel együtt harmonikus rezgést végez a vízszintes síkban. A rezgés amplitúdója \setbox0\hbox{$A=10\,\rm{cm}$}% \message{//depth:\the\dp0//}% \box0%. Mekkora a lemez és a test közötti súrlódási együttható, ha a test akkor kezd csúszni a lemezen, amikor a rezgésidő kisebb lesz, mint \setbox0\hbox{$T=1\,\rm{s}$}% \message{//depth:\the\dp0//}% \box0%?

Megoldás

Ha a rezgésidő \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0%, a rezgés körfrekvenciája \setbox0\hbox{$\omega=\frac{2\pi}T$}% \message{//depth:\the\dp0//}% \box0%, és a test legnagyobb gyorulása \setbox0\hbox{$a_{max}=\omega^2A$}% \message{//depth:\the\dp0//}% \box0%. Mivel a testre vízszintesen csak a súrlódási erő hat, a test mozgásegyenlete \setbox0\hbox{$ma=F_s$}% \message{//depth:\the\dp0//}% \box0%. A kritikus pillanat az, amikor a gyorulás a legnagyobb, ekkor a súrlódási erő nem lehet nagyobb a tapadási maximumnál, azaz
\[ma_{max}=mA\omega^2=F_{s,max}=\mu mg,\]
mivel a nyomóerő ebben az esetben a nehézségi erővel egyezik meg. Ebből rendezés után
\[\mu=\frac{A4\pi^2}{gT^2}=0,402\]