Elektrosztatika példák - Egyenletesen töltött körlap tengelye mentén a potenciáltér
Feladat
- sugarú szigetelő körlemezre töltést viszünk egyenletes felületi töltéssűrűséggel. A kör középpontja felett, a kör síkjától távolságra mekkora a potenciál?
Megoldás
Először határozzuk meg a felület töltéssűrűségét:
Ezt követően parametrizáljuk a körlap felületét és polárkoordináták szerint. Válasszunk ki egy szög alatt látszódó, a középponttól távolságra levő kicsiny felületdarabot, melynek sugár irányú szélessége (1. ábra). Ezen infinitezimális felületelem töltése:
Ezen infinitezimális felületelem ponttöltésnek tekinthető, melynek potenciál járuléka a kérdéses pontban:
Ahol a felületelem és a kérdéses pont távolsága. Ha a teljes felület által keltett potenciálra vagyunk kíváncsiak, a szuperpozíció elve alapján skalárisan összegeznünk kell az egyes felületelemek potenciál járulékait:
Behelyettesítve a felületi töltéssűrűségre kapott összefüggést:
Érdekesség: Érdemes kiszámítani a kapott potenciál negatív gradiensét:
Mely megadja a kérdéses pontban a térerősséget. Ezt vessük össze az Egyenletesen töltött körlap tengelye mentén az elektromos tér feladat megoldásával, ahol ugyanezen elrendezés elektromos terét kellett meghatározni térerősség vektorok összegzésével: