„Termodinamika példák - Dielektromos polarizáció termodinamikai vonatkozása” változatai közötti eltérés
a (Szöveg koherenssé tétele) |
|||
(egy szerkesztő 8 közbeeső változata nincs mutatva) | |||
8. sor: | 8. sor: | ||
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex># Mennyi hő szabadul fel az $\ | + | </noinclude><wlatex># Mennyi hő szabadul fel az $\varepsilon_r(T)$ dielektromos állandójú dielektrikum polarizációjakor, ha a külső elektromos tér nagyságát állandó hőmérsékleten, kvázi-stacionáriusan növeljük nulláról egy nem túl nagy $E$ értékre? A térfogatváltozás elhanyagolható.</wlatex><includeonly><wlatex>{{Útmutatás|content=Használjuk az I. főtétel $\mathrm{d}U=\delta Q+E\mathrm{d}P$ alakját, az $U(P, T)$ függvény teljes differenciálját, és azt, hogy a belső energia térfogatfüggésére kapott általános összefüggés átírható erre az esetre is a dielektrikum teljes dipólusmomentuma ($P$) segítségével a $-p\longrightarrow E$ és $V\longrightarrow P$ helyettesítéssel: ${\left(\frac{\partial U}{\partial P}\right)}_ T=E-T{\left(\frac{\partial E}{\partial T}\right)}_P$. Alkalmazzuk még a $P={\varepsilon}_0\left(\varepsilon_r-1\right)EV$ összefüggést is!}}</wlatex><wlatex>{{Végeredmény|content=$$Q=-\frac12T\varepsilon_0V\frac{\mathrm{d}\varepsilon_r(T)}{\mathrm{d}T}E^2$$}}</wlatex></includeonly><noinclude> |
+ | |||
== Megoldás == | == Megoldás == | ||
− | <wlatex>A felszabaduló hőt a termodinamika első főtételének segítségével tudjuk kifejezni, ahol be kell vezetnünk a munkavégzésre képes új konjugált változókat | + | <wlatex>A felszabaduló hőt a termodinamika első főtételének segítségével tudjuk kifejezni, ahol be kell vezetnünk a munkavégzésre képes új konjugált változókat, az intenzív $\mathbf{E}$ elektromos térerősséget és extenzív $\mathbf{P}$ polarizációt. Ezt legegyszerűbben a [[Termodinamika példák - További differenciális összefüggések, általános változócsere|változócsere]] során megállapított analógia alapján tehetjük meg: |
− | {| style=" | + | {| style="margin-left: auto; margin-right: auto;" |
| align="right" | $-p$ || $\longrightarrow$ || $\mathbf{E}$, | | align="right" | $-p$ || $\longrightarrow$ || $\mathbf{E}$, | ||
|- | |- | ||
− | | align="right" | $V$ || $\longrightarrow$ || $\mathbf{P}$ | + | | align="right" | $V$ || $\longrightarrow$ || $\mathbf{P}$, |
|- | |- | ||
− | | align="right" | $\mathrm{d}U | + | | align="right" | $\delta Q = \mathrm{d}U + p\mathrm{d}V$ || $\longrightarrow$ || $\delta Q = \mathrm{d}U - \mathbf{E}\,\mathbf{\mathrm{d}P}$. |
|} | |} | ||
− | Mivel a $\varepsilon(T)$ dielektromos állandó skalár, azért az elektromos térerősség és a polarizáció egymással párhuzamos, $\mathbf{E}\mathbf{\mathrm{d}P}=E\mathrm{d}P$. | + | |
+ | Mivel a $\varepsilon(T)$ dielektromos állandó skalár, azért az elektromos térerősség és a polarizáció egymással párhuzamos, $\mathbf{E}\,\mathbf{\mathrm{d}P}=E\,\mathrm{d}P$. | ||
A hő kifejezéséhez meg kell adnunk a belső energia megváltozását teljes differenciálként a két ismert paraméter, a hőmérséklet és a polarizáció segítségével (a feladat szerint a térfogatváltozást elhanyagolhatjuk): | A hő kifejezéséhez meg kell adnunk a belső energia megváltozását teljes differenciálként a két ismert paraméter, a hőmérséklet és a polarizáció segítségével (a feladat szerint a térfogatváltozást elhanyagolhatjuk): | ||
− | $$ \mathrm{d}U = \left | + | $$ \mathrm{d}U = \left(\frac{\partial U}{\partial T}\right)_P\,\mathrm{d}T + \left(\frac{\partial U}{\partial P}\right)_T\,\mathrm{d}P, $$ |
ahol a második paramétert a [[Termodinamika példák - További differenciális összefüggések, általános változócsere|változócseréről szóló feladatban]] levezetett általános képlet alapján felírhatjuk: | ahol a második paramétert a [[Termodinamika példák - További differenciális összefüggések, általános változócsere|változócseréről szóló feladatban]] levezetett általános képlet alapján felírhatjuk: | ||
− | $$ \left | + | $$ \left(\frac{\partial U}{\partial P}\right)_T = -T\left(\frac{\partial E}{\partial T}\right)_P + E. $$ |
+ | Mivel az elektromos teret állandó hőmérséklet mellet kapcsoljuk be, $\mathrm{d}T=0$, a hő kifejezésében egyetlen tag marad: | ||
+ | $$ \delta Q = -T\left(\frac{\partial E}{\partial T}\right)_P \,\mathrm{d}P. $$ | ||
+ | |||
+ | A differenciálhányados kiszámításához az elektromos teret meg kell adnunk a hőmérséklet és a polarizáció függvényeként. Ehhez az összefüggéshez a polarizáció ($\text{polarizációsűrűség}\times\text{térfogat}$) definíciójából indulunk ki: | ||
+ | $$ P = \varepsilon_0\left(\varepsilon_r(T)-1\right)E\,V, $$ | ||
+ | amiből | ||
+ | $$ E(T,P) = \frac{P}{\varepsilon_0\left(\varepsilon_r(T)-1\right)V} \qquad \text{és} \qquad | ||
+ | \left(\frac{\partial E}{\partial T}\right)_P = - \frac{P}{\varepsilon_0V} \frac{1}{\left(\varepsilon_r(T)-1\right)^2} \frac{\partial \varepsilon}{\partial T}. $$ | ||
+ | |||
+ | Ezzel | ||
+ | $$ \delta Q = \frac{T}{\varepsilon_0V\left(\varepsilon_r(T)-1\right)^2} \frac{\partial \varepsilon_r(T)}{\partial T} \cdot P \,\mathrm{d}P, $$ | ||
+ | amit állandó hőmérsékleten integrálhatunk, mert akkor az első tényező is állandó (magas hőmérsékleten $\varepsilon_r$ valóban nem függ $P$-től, azaz $E$-től): | ||
+ | $$ Q = \frac{T}{\varepsilon_0V\left(\varepsilon_r(T)-1\right)^2} \frac{\partial \varepsilon_r(T)}{\partial T} \frac{P^2}{2}. $$ | ||
+ | Ide a polarizáció definícióját visszahelyettesítve | ||
+ | $$ Q=-\frac12T\frac{\mathrm{d}\varepsilon_r(T)}{\mathrm{d}T}\varepsilon_0E^2V $$ | ||
+ | egyszerűbb alakot nyerjük. | ||
+ | |||
+ | == Megjegyzés == | ||
+ | Eredményünk az elektromos eltolás $\mathbf{D}=\varepsilon_0\varepsilon_r(T)\mathbf{E}$ definíciójával | ||
+ | $$ Q=-\frac12\mathbf{DE}\frac{T}{\varepsilon_r(T)}\frac{\mathrm{d}\varepsilon_r(T)}{\mathrm{d}T}V $$ | ||
+ | vektoros alakban is érvényes. | ||
</wlatex> | </wlatex> | ||
</noinclude> | </noinclude> |
A lap jelenlegi, 2013. május 24., 18:53-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Termodinamika - Homogén rendszerek |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Mennyi hő szabadul fel az
dielektromos állandójú dielektrikum polarizációjakor, ha a külső elektromos tér nagyságát állandó hőmérsékleten, kvázi-stacionáriusan növeljük nulláról egy nem túl nagy
értékre? A térfogatváltozás elhanyagolható.
Megoldás
A felszabaduló hőt a termodinamika első főtételének segítségével tudjuk kifejezni, ahol be kell vezetnünk a munkavégzésre képes új konjugált változókat, az intenzív elektromos térerősséget és extenzív
polarizációt. Ezt legegyszerűbben a változócsere során megállapított analógia alapján tehetjük meg:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Mivel a dielektromos állandó skalár, azért az elektromos térerősség és a polarizáció egymással párhuzamos,
.
A hő kifejezéséhez meg kell adnunk a belső energia megváltozását teljes differenciálként a két ismert paraméter, a hőmérséklet és a polarizáció segítségével (a feladat szerint a térfogatváltozást elhanyagolhatjuk):
![\[ \mathrm{d}U = \left(\frac{\partial U}{\partial T}\right)_P\,\mathrm{d}T + \left(\frac{\partial U}{\partial P}\right)_T\,\mathrm{d}P, \]](/images/math/c/0/2/c027105afdf2ee611cd78479d4e0fc82.png)
ahol a második paramétert a változócseréről szóló feladatban levezetett általános képlet alapján felírhatjuk:
![\[ \left(\frac{\partial U}{\partial P}\right)_T = -T\left(\frac{\partial E}{\partial T}\right)_P + E. \]](/images/math/0/d/2/0d2001072e363ec7a2f8e66172c18940.png)
Mivel az elektromos teret állandó hőmérséklet mellet kapcsoljuk be, , a hő kifejezésében egyetlen tag marad:
![\[ \delta Q = -T\left(\frac{\partial E}{\partial T}\right)_P \,\mathrm{d}P. \]](/images/math/2/8/e/28efcafdbe3df41b8167bd9297b45ec7.png)
A differenciálhányados kiszámításához az elektromos teret meg kell adnunk a hőmérséklet és a polarizáció függvényeként. Ehhez az összefüggéshez a polarizáció () definíciójából indulunk ki:
![\[ P = \varepsilon_0\left(\varepsilon_r(T)-1\right)E\,V, \]](/images/math/a/0/a/a0a444b5016c32a14ec79b2aaff9639e.png)
amiből
![\[ E(T,P) = \frac{P}{\varepsilon_0\left(\varepsilon_r(T)-1\right)V} \qquad \text{és} \qquad \left(\frac{\partial E}{\partial T}\right)_P = - \frac{P}{\varepsilon_0V} \frac{1}{\left(\varepsilon_r(T)-1\right)^2} \frac{\partial \varepsilon}{\partial T}. \]](/images/math/6/d/a/6da303cfd48dc2038fa4b307137c56ee.png)
Ezzel
![\[ \delta Q = \frac{T}{\varepsilon_0V\left(\varepsilon_r(T)-1\right)^2} \frac{\partial \varepsilon_r(T)}{\partial T} \cdot P \,\mathrm{d}P, \]](/images/math/3/b/2/3b28b9d5b95018e8129285a5f7c61151.png)
amit állandó hőmérsékleten integrálhatunk, mert akkor az első tényező is állandó (magas hőmérsékleten valóban nem függ
-től, azaz
-től):
![\[ Q = \frac{T}{\varepsilon_0V\left(\varepsilon_r(T)-1\right)^2} \frac{\partial \varepsilon_r(T)}{\partial T} \frac{P^2}{2}. \]](/images/math/1/c/8/1c8049d1bf757680b0e3bed1d8e6f9ec.png)
Ide a polarizáció definícióját visszahelyettesítve
![\[ Q=-\frac12T\frac{\mathrm{d}\varepsilon_r(T)}{\mathrm{d}T}\varepsilon_0E^2V \]](/images/math/9/1/7/917eaa05505cf5470cb04667a8e6ce38.png)
egyszerűbb alakot nyerjük.
Megjegyzés
Eredményünk az elektromos eltolás definíciójával
![\[ Q=-\frac12\mathbf{DE}\frac{T}{\varepsilon_r(T)}\frac{\mathrm{d}\varepsilon_r(T)}{\mathrm{d}T}V \]](/images/math/6/f/e/6fe4da0d1c2e1910a8f629af64a196b7.png)
vektoros alakban is érvényes.