„Termodinamika példák - Dielektromos polarizáció termodinamikai vonatkozása” változatai közötti eltérés
8. sor: | 8. sor: | ||
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex># Mennyi hő szabadul fel az $\ | + | </noinclude><wlatex># Mennyi hő szabadul fel az $\varepsilon_r(T)$ dielektromos állandójú dielektrikum polarizációjakor, ha a külső elektromos tér nagyságát állandó hőmérsékleten, kvázi-stacionáriusan növeljük nulláról egy nem túl nagy $E$ értékre? A térfogatváltozás elhanyagolható.</wlatex><includeonly><wlatex>{{Útmutatás|content=Használjuk az I. főtétel $\mathrm{d}U=\delta Q+E\mathrm{d}P$ alakját, az $U(P, T)$ függvény teljes differenciálját, és azt, hogy a belső energia térfogatfüggésére kapott általános összefüggés átírható erre az esetre is a dielektrikum teljes dipólusmomentuma ($P$) segítségével a $-p\to E$ és $V\to P$ helyettesítéssel: ${\left(\frac{\partial U}{\partial P}\right)}_ T=E-T{\left(\frac{\partial E}{\partial T}\right)}_P$. Alkalmazzuk még a $P={\varepsilon}_ 0\left(\varepsilon-1\right)EV$ összefüggést is!}}</wlatex><wlatex>{{Végeredmény|content=$$Q=-\frac12T\varepsilon_0V\frac{\mathrm{d}\varepsilon_r(T)}{\mathrm{d}T}E^2$$}}</wlatex></includeonly><noinclude> |
== Megoldás == | == Megoldás == | ||
<wlatex>A felszabaduló hőt a termodinamika első főtételének segítségével tudjuk kifejezni, ahol be kell vezetnünk a munkavégzésre képes új konjugált változókat. Az intenzív $\mathbf{E}$ elektromos térerősséget és extenzív $\mathbf{P}$ polarizációt, ezt legegyszerűbben a [[Termodinamika példák - További differenciális összefüggések, általános változócsere|változócsere]] során megállapított analógia alapján tehetjük meg: | <wlatex>A felszabaduló hőt a termodinamika első főtételének segítségével tudjuk kifejezni, ahol be kell vezetnünk a munkavégzésre képes új konjugált változókat. Az intenzív $\mathbf{E}$ elektromos térerősséget és extenzív $\mathbf{P}$ polarizációt, ezt legegyszerűbben a [[Termodinamika példák - További differenciális összefüggések, általános változócsere|változócsere]] során megállapított analógia alapján tehetjük meg: | ||
31. sor: | 31. sor: | ||
\left[\frac{\partial E}{\partial T}\right]_P = - \frac{P}{\varepsilon_0V} \frac{1}{\left(\varepsilon_r(T)-1\right)^2} \frac{\partial \varepsilon}{\partial T} $$ | \left[\frac{\partial E}{\partial T}\right]_P = - \frac{P}{\varepsilon_0V} \frac{1}{\left(\varepsilon_r(T)-1\right)^2} \frac{\partial \varepsilon}{\partial T} $$ | ||
Ezzel | Ezzel | ||
− | $$ \delta Q = \frac{T}{\varepsilon_0V\left(\varepsilon_r(T)-1\right)^2} \frac{\partial \ | + | $$ \delta Q = \frac{T}{\varepsilon_0V\left(\varepsilon_r(T)-1\right)^2} \frac{\partial \varepsilon_r(T)}{\partial T} \cdot P \mathrm{d}P, $$ |
amit állandó hőmérsékleten integrálhatunk, mert akkor az első tényező is állandó | amit állandó hőmérsékleten integrálhatunk, mert akkor az első tényező is állandó | ||
− | $$ Q = \frac{T}{\varepsilon_0V\left(\varepsilon_r(T)-1\right)^2} \frac{\partial \ | + | $$ Q = \frac{T}{\varepsilon_0V\left(\varepsilon_r(T)-1\right)^2} \frac{\partial \varepsilon_r(T)}{\partial T} \frac{P^2}{2}, $$ |
ide a polarizáció definícióját visszahelyettesítve | ide a polarizáció definícióját visszahelyettesítve | ||
− | $$ Q=-\frac12T | + | $$ Q=-\frac12T\frac{\mathrm{d}\varepsilon(T)}{\mathrm{d}T}\varepsilon_0E^2V $$ |
egyszerűbb alakot kapjuk. | egyszerűbb alakot kapjuk. | ||
+ | |||
+ | == Megjegyzés == | ||
+ | Eredményünk az elektromos eltolás $\mathbf{D}=\varepsilon_0\varepsilon_r(T)\mathbf{E}$ definíciójával | ||
+ | $$ Q=-\frac12\mathbf{DE}\frac{T}{\varepsilon_r(T)}\frac{\mathrm{d}\varepsilon(T)}{\mathrm{d}T}V $$ | ||
+ | vektoros alakban is érvényes. | ||
</wlatex> | </wlatex> | ||
</noinclude> | </noinclude> |
A lap 2013. április 5., 23:22-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Termodinamika - Homogén rendszerek |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Mennyi hő szabadul fel az dielektromos állandójú dielektrikum polarizációjakor, ha a külső elektromos tér nagyságát állandó hőmérsékleten, kvázi-stacionáriusan növeljük nulláról egy nem túl nagy értékre? A térfogatváltozás elhanyagolható.
Megoldás
A felszabaduló hőt a termodinamika első főtételének segítségével tudjuk kifejezni, ahol be kell vezetnünk a munkavégzésre képes új konjugált változókat. Az intenzív elektromos térerősséget és extenzív polarizációt, ezt legegyszerűbben a változócsere során megállapított analógia alapján tehetjük meg:
, | ||
Mivel a dielektromos állandó skalár, azért az elektromos térerősség és a polarizáció egymással párhuzamos, . A hő kifejezéséhez meg kell adnunk a belső energia megváltozását teljes differenciálként a két ismert paraméter, a hőmérséklet és a polarizáció segítségével (a feladat szerint a térfogatváltozást elhanyagolhatjuk):
ahol a második paramétert a változócseréről szóló feladatban levezetett általános képlet alapján felírhatjuk:
Mivel az elektromos teret álandó hőmérséklet mellet kapcsoljuk be, , a hő kifejezésében egyetlen tag marad:
A differenciálhányados kiszámításához az elektromos teret meg kell adnunk a hőmérséklet és a polarizáció függvényeként. Ehhez az összefüggéshez a polarizáció ($\text{polarizációsűrűség}\times\text{térfogat}) definíciójából indulunk ki:
amiből
Ezzel
amit állandó hőmérsékleten integrálhatunk, mert akkor az első tényező is állandó
ide a polarizáció definícióját visszahelyettesítve
egyszerűbb alakot kapjuk.
Megjegyzés
Eredményünk az elektromos eltolás definíciójával
vektoros alakban is érvényes.