„Termodinamika példák - Átadott hő mérhető mennyiségekkel” változatai közötti eltérés

A Fizipedia wikiből
(Új oldal, tartalma: „<noinclude> Kategória:Kísérleti fizika 3. gyakorlat Kategória:Szerkesztő:Stippinger [[Kategória:Termodinamika - Kinetikus gázelmélet, transzportfolyamatok]…”)
 
9. sor: 9. sor:
 
}}
 
}}
 
== Feladat ==
 
== Feladat ==
</noinclude><wlatex># Feltételezve, hogy $S=S(p,T)$, mutassuk ki, hogy $T\,\mathrm{d}S=n C_p\,\mathrm{d}T-\beta_p TV\,\mathrm{d}p$ ($\beta_p$ az izobár hőtágulási együttható).</wlatex><includeonly><wlatex>{{Útmutatás|content=Írjuk fel $S$ teljes differenciálját, használjuk a ${\left(\frac{\partial S}{\partial T}\right)}_p={\left(\frac{\partial S}{\partial H}\right)}_p{\left(\frac{\partial H}{\partial T}\right)}_p$ matematikai összefüggést, a termodinamika két differenciális összefüggését és a $\beta_p$ definícióját.}}</wlatex></includeonly><noinclude>
+
</noinclude><wlatex># Feltételezve, hogy $S=S(p,T)$, mutassuk ki, hogy $T\,\mathrm{d}S=n C_p\,\mathrm{d}T-\beta_p TV\,\mathrm{d}p$, ahol $\beta_p$ az izobár hőtágulási együttható.</wlatex><includeonly><wlatex>{{Útmutatás|content=Írjuk fel $S$ teljes differenciálját, használjuk a ${\left(\frac{\partial S}{\partial T}\right)}_p={\left(\frac{\partial S}{\partial H}\right)}_p{\left(\frac{\partial H}{\partial T}\right)}_p$ matematikai összefüggést, a termodinamika két differenciális összefüggését és a $\beta_p$ definícióját.}}</wlatex></includeonly><noinclude>
 
== Megoldás ==
 
== Megoldás ==
<wlatex>Megoldás szövege
+
<wlatex>Írjuk fel $S(T,p)$ teljes differenciálját
 +
$$ \mathrm{d}S = \left(\frac{\partial S}{\partial p}\right)_T\,\mathrm{d}p + \left(\frac{\partial S}{\partial T}\right)_p\,\mathrm{d}T $$
 +
és az első tagban használjuk a
 +
$$ \left(\frac{\partial S}{\partial p}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_p=-V \beta_p$$
 +
[[Termodinamika példák - Maxwell-relációk|Maxwell-féle összefüggést]] és a kompresszibilitás definícióját.
 +
 
 +
A másodikra tagban alkalmazzuk a láncszabályt (ehhez minden differenciálhányadost ugyanazon rögzített váltzó melett kell felírni) és a fajhő definícióját:
 +
$$ \left(\frac{\partial S}{\partial T}\right)_p \left(\frac{\partial H}{\partial H}\right)_p = \left(\frac{\partial S}{\partial H}\right)_p \left(\frac{\partial H}{\partial T}\right)_p
 +
  = \left(\frac{\partial S}{\partial H}\right)_p n C_p, $$
 +
ennek továbbviteléhez használjuk a $\left(\frac{\partial H}{\partial S}\right)_p=T$ [[Termodinamika példák - A termodinamika differenciális összefüggései|differenciális összefüggés]] reciprokát, így az entrópia
 +
$$\,\mathrm{d}S=-V{\beta }_p\,\mathrm{d}p+\frac{n C_p} T\,\mathrm{d}T$$
 +
 
 +
$T$-vel való szorzás után
 +
$$ T\,\mathrm{d}S=-{\beta }_pTV\,\mathrm{d}p+ C_p\,\mathrm{d}T $$
 +
eredmény adódik.
 +
 
 
</wlatex>
 
</wlatex>
 
</noinclude>
 
</noinclude>

A lap 2013. április 17., 12:25-kori változata

Navigáció Pt·1·2·3
Kísérleti fizika 3. gyakorlat
Gyakorlatok listája:
  1. Kinetikus gázelmélet, transzport
  2. Állapotváltozás, I. főtétel
  3. Fajhő, Körfolyamatok
  4. Entrópia, II. főtétel
  5. Homogén rendszerek
  6. Fázisátalakulások
  7. Kvantummechanikai bevezető
Homogén rendszerek
Feladatok listája:
  1. TD diffegyenletek
  2. Maxwell-relációk
  3. Általános változócsere
  4. dT(S=áll) mérhetőkkel
  5. TdS mérhetőkkel
  6. Állapotjelzők (V,S) fv-ei
  7. dS(p=áll) mérhetőkkel
  8. Potenciálok állapotegyenletből
  9. Gumiszalag TD potenciáljai
  10. Dielektromos polarizáció
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. Feltételezve, hogy \setbox0\hbox{$S=S(p,T)$}% \message{//depth:\the\dp0//}% \box0%, mutassuk ki, hogy \setbox0\hbox{$T\,\mathrm{d}S=n C_p\,\mathrm{d}T-\beta_p TV\,\mathrm{d}p$}% \message{//depth:\the\dp0//}% \box0%, ahol \setbox0\hbox{$\beta_p$}% \message{//depth:\the\dp0//}% \box0% az izobár hőtágulási együttható.

Megoldás

Írjuk fel \setbox0\hbox{$S(T,p)$}% \message{//depth:\the\dp0//}% \box0% teljes differenciálját

\[ \mathrm{d}S = \left(\frac{\partial S}{\partial p}\right)_T\,\mathrm{d}p + \left(\frac{\partial S}{\partial T}\right)_p\,\mathrm{d}T \]

és az első tagban használjuk a

\[ \left(\frac{\partial S}{\partial p}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_p=-V \beta_p\]

Maxwell-féle összefüggést és a kompresszibilitás definícióját.

A másodikra tagban alkalmazzuk a láncszabályt (ehhez minden differenciálhányadost ugyanazon rögzített váltzó melett kell felírni) és a fajhő definícióját:

\[ \left(\frac{\partial S}{\partial T}\right)_p \left(\frac{\partial H}{\partial H}\right)_p = \left(\frac{\partial S}{\partial H}\right)_p \left(\frac{\partial H}{\partial T}\right)_p    = \left(\frac{\partial S}{\partial H}\right)_p n C_p, \]

ennek továbbviteléhez használjuk a \setbox0\hbox{$\left(\frac{\partial H}{\partial S}\right)_p=T$}% \message{//depth:\the\dp0//}% \box0% differenciális összefüggés reciprokát, így az entrópia

\[\,\mathrm{d}S=-V{\beta }_p\,\mathrm{d}p+\frac{n C_p} T\,\mathrm{d}T\]

\setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0%-vel való szorzás után

\[ T\,\mathrm{d}S=-{\beta }_pTV\,\mathrm{d}p+ C_p\,\mathrm{d}T \]

eredmény adódik.