Termodinamika - Homogén rendszerek
A Fizipedia wikiből
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Termodinamika - Homogén rendszerek |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Mérhető mennyiségek
![]() |
= | ![]() |
állandó térfogaton mért hőkapacitás* |
![]() |
= | ![]() |
állandó nyomáson mért hőkapacitás* |
![]() |
= | ![]() |
izobár hőtágulási együttható |
![]() |
= | ![]() |
izoterm kompresszibilitás |
![]() |
= | ![]() |
adiabatikus kompresszibilitás |
* ha egységnyi tömegre illetve anyagmennyiségre vonatkoztatjuk, akkor rendre fajhőnek illetve mólhőnek nevezzük.
Feladatok
- Bizonyítsuk be a
,
,
és
összefüggéseket!
- Bizonyítsuk be a
Maxwell-összefüggést!
- Állandó anyagmennyiségű homogén rendszerben termikus és mechanikai kölcsönhatás esetén fennáll a
egyenlet. A fenti egyenlet levezetésének mintájára bizonyítsuk be, hogy ha a termikus kölcsönhatás mellett tetszőleges –
intenzív- és
extenzív mennyiségpárral jellemzett – kölcsönhatás lép fel, akkor a fenti egyenlet érvényes marad, ha végrehajtjuk a
és a
változócserét!
- Fejezzük ki mérhető mennyiségekkel (hőtágulási együttható, kompresszibilitás, mólhő) egy rendszer
hőmérséklet-változását, ha térfogata adiabatikus, kvázisztatikus folyamat során
-vel megváltozik! Mutassuk meg, hogy
alatt a víz adiabatikus, kvázisztatikus összenyomáskor lehűl!
ÚtmutatásÍrjuk fel az első főtételt, írjuk be azfüggvény teljes differenciálját, alkalmazzuk a belső energia térfogatfüggésére érvényes összefüggést, és a nyomás hőmérsékletfüggéséről szóló feladat eredményét! A víz hőtágulási együtthatója
alatt negatív.
- Feltételezve, hogy
, mutassuk ki, hogy
, ahol
az izobár hőtágulási együttható.
ÚtmutatásÍrjuk felteljes differenciálját, használjuk a
matematikai összefüggést, a termodinamika két differenciális összefüggését és a
definícióját.
- Az első főtétel és a termodinamika differenciálegyenletei felhasználásával mutassuk meg, hogy ha ismerjük egy állandó anyagmennyiségű rendszer belső energiáját a térfogat és az entrópia függvényeként (vagyis az
függvényt), akkor a rendszer bármely állapotjelzője (nyomás, hőmérséklet, entalpia, stb.) megadható
és
függvényeként!
- Mennyivel változik egy
tömegű,
hőmérsékletű,
térfogatú rendszer entrópiája, ha térfogata állandó nyomáson
értékkel megnő? Az állandó nyomáson mért
fajhőt és a
hőtágulási együtthatót ismertnek tekintjük.
ÚtmutatásÍrjuk fel azfüggvény teljes differenciálját állandó nyomáson, és alkalmazzuk
és
definícióját!
Végeredmény
- Egy rendszer állapotegyenlete
, ahol a hőmérsékletfüggő együtthatók kísérletekből ismertek. Mennyit változik a rendszer szabad entalpiája és entrópiája, ha a nyomást rögzített
hőmérsékleten
-ról
-re változtatjuk?
ÚtmutatásHasználjuk ki aés az
összefüggéseket!
Végeredményésahol a vessző a hőmérséklet szerinti deriváltat jelenti.
- Egy gumiszalag állapotegyenlete
alakba írható, ahol
a szalagban fellépő húzóerő nagysága,
a szalag hossza,
a hőmérséklet,
a szalag erőmentes hossza,
pozitív állandó.
- a) Mutassuk ki, hogy a belső energia nem függ a szalag hosszától!ÚtmutatásA belső energia térfogatfüggésére kapott általános összefüggés átírható a vizsgált esetre a
és
helyettesítéssel.
- b) Írjuk fel a termodinamika fundamentális egyenletét, továbbá a szabad energia és a szabad entalpia megváltozását a gumiszalagra!ÚtmutatásAlkalmazzuk az a) pontban leírt fenti változócseréket!Végeredmény
- c) Mekkora munkát végzünk, és mennyi a gumiszalag által leadott hő, ha a szalag hosszát izotermikus, reverzíbilis folyamatban
-ról
-ra növeljük.
ÚtmutatásHasználjuk az I. főtételt, és vegyük figyelembe az a) részfeladat eredményét!Végeredmény - d) Igazoljuk, hogy a gumiszalag hőmérséklete megnő, ha adiabatikusan megnyújtjuk!ÚtmutatásHasonlítsuk össze a fundamentális egyenletet és az
függvény teljes differenciálját, és vegyük figyelembe az (a) részfeladat eredményét!
Végeredményaholaz állandó hossznál mért hőkapacitás.
- a) Mutassuk ki, hogy a belső energia nem függ a szalag hosszától!
- Mennyi hő szabadul fel az
dielektromos állandójú dielektrikum polarizációjakor, ha a külső elektromos tér nagyságát állandó hőmérsékleten, kvázi-stacionáriusan növeljük nulláról egy nem túl nagy
értékre? A térfogatváltozás elhanyagolható.
ÚtmutatásHasználjuk az I. főtételalakját, az
függvény teljes differenciálját, és azt, hogy a belső energia térfogatfüggésére kapott általános összefüggés átírható erre az esetre is a dielektrikum teljes dipólusmomentuma (
) segítségével a
és
helyettesítéssel:
. Alkalmazzuk még a
összefüggést is!
Végeredmény