„Kvantummechanikai bevezető példák - Tantál kilépési munkája” változatai közötti eltérés
(Új oldal, tartalma: „<noinclude> Kategória:Kísérleti fizika 3. gyakorlat Kategória:Szerkesztő:Stippinger Kategória:Kvantummechanikai bevezető {{Kísérleti fizika gyakorlat …”) |
|||
11. sor: | 11. sor: | ||
</noinclude><wlatex># Egy $25\,\mathrm{W}$-os megfelelő gázzal töltött lámpától $1\,\mathrm{m}$-re egy Tantál fémfelületet ($\Phi_0=4\,\mathrm{eV}$) helyezünk el. A klasszikus elmélet alapján becsülje meg, hogy egy elektron átlagosan mennyi idő alatt gyűjtene össze annyi energiát, hogy kiléphessen a fémből!<br />(A valóságban a fotoeffektus során az elektronok a megvilágításkor „azonnal” kilépnek a fémből.)</wlatex><includeonly><wlatex>{{Útmutatás|content=$$keplet$$}}{{Végeredmény|content=$$keplet$$}}</wlatex></includeonly><noinclude> | </noinclude><wlatex># Egy $25\,\mathrm{W}$-os megfelelő gázzal töltött lámpától $1\,\mathrm{m}$-re egy Tantál fémfelületet ($\Phi_0=4\,\mathrm{eV}$) helyezünk el. A klasszikus elmélet alapján becsülje meg, hogy egy elektron átlagosan mennyi idő alatt gyűjtene össze annyi energiát, hogy kiléphessen a fémből!<br />(A valóságban a fotoeffektus során az elektronok a megvilágításkor „azonnal” kilépnek a fémből.)</wlatex><includeonly><wlatex>{{Útmutatás|content=$$keplet$$}}{{Végeredmény|content=$$keplet$$}}</wlatex></includeonly><noinclude> | ||
== Megoldás == | == Megoldás == | ||
− | <wlatex> | + | <wlatex>Az energiaáram-sűrűség a $P=25\,\mathrm{W}$-os izzótól $\ell$ távolságban |
+ | $$ J_e = \frac{P}{4\pi \ell^2}. $$ | ||
+ | Az egy tantálatomra jutó teljesítmény | ||
+ | $$ P_\mathrm{Ta} = J_e \frac{D^2\pi}{4} = \frac{P}{16} \left( \frac{D}{\ell} \right)^2, $$ | ||
+ | ahol $ D\approx 290\,\mathrm{pm} $ a [http://www.webelements.com/tantalum/atom_sizes.html tantál atom átmérője]. | ||
+ | |||
+ | Az átlagos idő, ami alatt egy atom összegyűjtheti a szükséges kilépési munkát (megjegyzendő, hogy a kilépési munkát az anyag szilárd halmazállapotában, az ionizációs energiát az anyag atomos - gáz - halmazállapotában használjuk, a kettő általában nem egyezik meg): | ||
+ | $$ \Delta t = \frac{\Phi_0}{P_\mathrm{Ta}} | ||
+ | = \frac{4 \cdot 1{,}602 \cdot 10^{-19}\,\mathrm{J}}{ 1{,}314 \cdot 10^{-19}\,\mathrm{W}} = 4{,}88\,\mathrm{s}. $$ | ||
+ | |||
+ | A gyakorlatban már egyszerű kísérleti elrendezésekben is kimérhetjük, hogy az első elektronok $\mathrm{\mu s}$-nál kisebb időskálán megjelennek, ami alátámasztja, hogy az energiát fotonok hordozzák és egy fotont pontosan egy atom nyelhet el. Ha a foton energiája (frekvenciája) elég nagy, akkor lesznek kilépő elektronok, különben az energia a szilárdtest termikus gerjesztésébe disszipálódik. | ||
</wlatex> | </wlatex> | ||
</noinclude> | </noinclude> |
A lap 2013. április 23., 09:21-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Kvantummechanikai bevezető |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Egy -os megfelelő gázzal töltött lámpától -re egy Tantál fémfelületet () helyezünk el. A klasszikus elmélet alapján becsülje meg, hogy egy elektron átlagosan mennyi idő alatt gyűjtene össze annyi energiát, hogy kiléphessen a fémből!
(A valóságban a fotoeffektus során az elektronok a megvilágításkor „azonnal” kilépnek a fémből.)
Megoldás
Az energiaáram-sűrűség a -os izzótól távolságban
Az egy tantálatomra jutó teljesítmény
ahol a tantál atom átmérője.
Az átlagos idő, ami alatt egy atom összegyűjtheti a szükséges kilépési munkát (megjegyzendő, hogy a kilépési munkát az anyag szilárd halmazállapotában, az ionizációs energiát az anyag atomos - gáz - halmazállapotában használjuk, a kettő általában nem egyezik meg):
A gyakorlatban már egyszerű kísérleti elrendezésekben is kimérhetjük, hogy az első elektronok -nál kisebb időskálán megjelennek, ami alátámasztja, hogy az energiát fotonok hordozzák és egy fotont pontosan egy atom nyelhet el. Ha a foton energiája (frekvenciája) elég nagy, akkor lesznek kilépő elektronok, különben az energia a szilárdtest termikus gerjesztésébe disszipálódik.