„Kvantummechanikai bevezető példák - Compton-szórás energiaviszonyai” változatai közötti eltérés
A Fizipedia wikiből
9. sor: | 9. sor: | ||
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex># Határozza meg, hogy a Compton-szórás esetén a beeső foton energiájának hány százalékát adja le az elektronnak!</wlatex><includeonly><wlatex>{{Útmutatás|content=A Compton-szórás levezetéséhez írja fel a relativisztikus energia- és impulzusmegmaradást.}}{{Végeredmény|content=$$ | + | </noinclude><wlatex># Határozza meg, hogy a Compton-szórás esetén a beeső foton energiájának hány százalékát adja le az elektronnak!</wlatex><includeonly><wlatex>{{Útmutatás|content=A Compton-szórás levezetéséhez írja fel a relativisztikus energia- és impulzusmegmaradást.}}{{Végeredmény|content=$$\eta = 1 - \left(\frac{p_f(1-\cos\vartheta)}{m_e c}+1\right)^{-1},$$ ahol $\vartheta$ a foton eltérülése eredeti irányától.}}</wlatex></includeonly><noinclude> |
== Megoldás == | == Megoldás == | ||
<wlatex>A Compton-szórás a fotonok elektronokon való szóródásának relativisztikus elmélete. Egy részecske relativisztikus energiája | <wlatex>A Compton-szórás a fotonok elektronokon való szóródásának relativisztikus elmélete. Egy részecske relativisztikus energiája |
A lap 2013. április 23., 19:44-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Kvantummechanikai bevezető |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Határozza meg, hogy a Compton-szórás esetén a beeső foton energiájának hány százalékát adja le az elektronnak!
Megoldás
A Compton-szórás a fotonok elektronokon való szóródásának relativisztikus elmélete. Egy részecske relativisztikus energiája
ahol a részecske nyugalmi tömege, relativisztikus impulzusa.
Vizsgáljuk azt az esetet, amikor a kezdeti impulzusú foton egy nyugalomban lévő () elektronon szóródik (ezt a koordinátarendszer megfelelő választásával könnyen elérhetjük). Az energiamegmaradás szerint
Az impulzusmegmaradás szerint (ld. ábra)
ahol a foton eredeti irányától való eltéréséne szöge, ezzel az előző egyenlet
alakot ölti és
A foton által átadott energiahányad
Az kifejezés szerepel a Klein-Nishina-formulában is, ami a fotonszórás differenciális hatáskeresztmetszetét adja meg.