„Kvantummechanikai bevezető példák - Fluxuskvantálás szemléletesen” változatai közötti eltérés

A Fizipedia wikiből
11. sor: 11. sor:
 
</noinclude><wlatex># Alkalmazza a Bohr-Sommerfeld-féle kvantálási hipotézist körpályán mozgó elektronra és egy lineáris oszcillátorra! Magyarázza meg a szupravezetésnél fellépő „fluxuskvantálás” jelenségét a Bohr-Sommerfeld-féle kvantálási hipotézis segítségével!</wlatex><includeonly><wlatex>{{Útmutatás|content=$$keplet$$}}{{Végeredmény|content=$$keplet$$}}</wlatex></includeonly><noinclude>
 
</noinclude><wlatex># Alkalmazza a Bohr-Sommerfeld-féle kvantálási hipotézist körpályán mozgó elektronra és egy lineáris oszcillátorra! Magyarázza meg a szupravezetésnél fellépő „fluxuskvantálás” jelenségét a Bohr-Sommerfeld-féle kvantálási hipotézis segítségével!</wlatex><includeonly><wlatex>{{Útmutatás|content=$$keplet$$}}{{Végeredmény|content=$$keplet$$}}</wlatex></includeonly><noinclude>
 
== Megoldás ==
 
== Megoldás ==
<wlatex>A Bohr-féle hidrogénmodell kvantumhipotézisei
+
<wlatex>A Bohr-féle hidrogénmodell posztulátumai:
# az elektron körpályán mozog (centrális erőtér)
+
# Az elektron körpályán mozog (centrális erőtér).
# megengedett pályasugarak, stacionárius pályák, ahol energiakisugárzás nélkül keringhet (a körmozgás gyorsuló mozgás)
+
# Megengedett pályasugarak, stacionárius pályák, ahol a töltéssel rendelkező elektron energiaveszteség nélkül keringhet (a körmozgás gyorsuló mozgás).
# ezek a sugarak kvantáltak $L\equiv mvr = n\hbar$
+
# A megengedett pályákon az elektron impulzusmomentuma kvantált: $L\equiv mvr = n\hbar$ (kvantumhipotézise).
# $E_i$ és $E_f$ energiájú pályák közti átmenetre $h\nu=E_f-E_i$
+
# Két, $E_i$ és $E_f$ energiájú pálya közti átmenetre a fotonkibocsátás/fotonelnyelés $h\nu=E_f-E_i$.
A '''körpályán mozgó elektronra''' vonatkozó 3. hipotézist úgy fogalmazhatjuk át a Lagrange-formalizmusban, hogy a rendszer Lagrange-függvénye $\mathcal{L}=\frac12 m r^2 \dot{\varphi}$. A $p_\varphi$ kanonikus impulzusmomentum fázistérbeli integrálja a stacionárius pályán kvantált:
+
A '''körpályán mozgó elektronra''' vonatkozó 3. posztulátumot úgy fogalmazhatjuk át a Lagrange-formalizmusban, hogy a rendszer Lagrange-függvénye $\mathcal{L}=\frac12 m r^2 \dot{\varphi}$. A $p_\varphi$ kanonikus impulzusmomentum fázistérbeli integrálja a stacionárius pályán kvantált:
 
$$ \oint p_\varphi\,\mathrm{d}\varphi = 2\pi \,p_\varphi = nh, $$
 
$$ \oint p_\varphi\,\mathrm{d}\varphi = 2\pi \,p_\varphi = nh, $$
 
ahol $p_\varphi=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}=mr^2\dot{\varphi} = mvr, $
 
ahol $p_\varphi=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}=mr^2\dot{\varphi} = mvr, $
23. sor: 23. sor:
 
A '''lineáris oszcillátor''' Lagrange- és Hamilton-függvénye rendre
 
A '''lineáris oszcillátor''' Lagrange- és Hamilton-függvénye rendre
 
$$ \mathcal{L}=\frac12 m \dot{x}^2 - \frac12 m \omega^2 x^2, \qquad \mathcal{H}=\frac{p^2}{2m} + \frac12 m \omega^2 x^2, $$
 
$$ \mathcal{L}=\frac12 m \dot{x}^2 - \frac12 m \omega^2 x^2, \qquad \mathcal{H}=\frac{p^2}{2m} + \frac12 m \omega^2 x^2, $$
ahol $p=\frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$ kanonikus impulzus integrálja a fázistérbeli integrálja az $E$ energiájú pályán egy ellipszis területét számítja, aminek egyenlete $\mathcal{H}=E$ vagyis $\frac{p^2}{(\sqrt{2mE})^2} + \frac{x^2}{\left(\sqrt{\frac{2E}{m \omega^2}}\right)^2}=1$:
+
ahol $p=\frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$ kanonikus impulzus fázistérbeli integrálja
 +
az $E$ energiájú pályán a $\mathcal{H}=E$ egyenletű
 +
(azaz $\frac{p^2}{\left(\sqrt{2mE}\right)^2} + \frac{x^2}{\left(\sqrt{\textstyle \frac{2E}{m \omega^2}}\right)^2}=1$ egyenletű)
 +
ellipszis területét adja, és a pályaintegrál kvantált
 
$$ \oint p\,\mathrm{d}x = \pi \sqrt{2mE}\sqrt{\frac{2E}{m \omega^2}} = \pi \frac{2E}{\omega} = nh, $$
 
$$ \oint p\,\mathrm{d}x = \pi \sqrt{2mE}\sqrt{\frac{2E}{m \omega^2}} = \pi \frac{2E}{\omega} = nh, $$
kvantált és $E=n\omega\hbar$.
+
amiből $E=n\omega\hbar$.
 
</wlatex>
 
</wlatex>
 
</noinclude>
 
</noinclude>

A lap 2013. április 23., 17:16-kori változata

Navigáció Pt·1·2·3
Kísérleti fizika 3. gyakorlat
Gyakorlatok listája:
  1. Kinetikus gázelmélet, transzport
  2. Állapotváltozás, I. főtétel
  3. Fajhő, Körfolyamatok
  4. Entrópia, II. főtétel
  5. Homogén rendszerek
  6. Fázisátalakulások
  7. Kvantummechanikai bevezető
Kvantummechanikai bevezető
Feladatok listája:
  1. Nap felszíni hőmérséklete
  2. Izzólámpa hatásfoka
  3. Fekete test
  4. Tantál kilépési munkája
  5. Compton-szórás
  6. Compton-szórás szabadon
  7. Fluxuskvantálás
  8. Bohr-modell
  9. Rel. tömegnövekedés
  10. Kéttest korrekció
  11. Visszalökődés
  12. Korrespondencia-elv
  13. Foton és elektron Ekin(k)
  14. Schrödinger-egyenlet
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. Alkalmazza a Bohr-Sommerfeld-féle kvantálási hipotézist körpályán mozgó elektronra és egy lineáris oszcillátorra! Magyarázza meg a szupravezetésnél fellépő „fluxuskvantálás” jelenségét a Bohr-Sommerfeld-féle kvantálási hipotézis segítségével!

Megoldás

A Bohr-féle hidrogénmodell posztulátumai:

  1. Az elektron körpályán mozog (centrális erőtér).
  2. Megengedett pályasugarak, stacionárius pályák, ahol a töltéssel rendelkező elektron energiaveszteség nélkül keringhet (a körmozgás gyorsuló mozgás).
  3. A megengedett pályákon az elektron impulzusmomentuma kvantált: \setbox0\hbox{$L\equiv mvr = n\hbar$}% \message{//depth:\the\dp0//}% \box0% (kvantumhipotézise).
  4. Két, \setbox0\hbox{$E_i$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$E_f$}% \message{//depth:\the\dp0//}% \box0% energiájú pálya közti átmenetre a fotonkibocsátás/fotonelnyelés \setbox0\hbox{$h\nu=E_f-E_i$}% \message{//depth:\the\dp0//}% \box0%.

A körpályán mozgó elektronra vonatkozó 3. posztulátumot úgy fogalmazhatjuk át a Lagrange-formalizmusban, hogy a rendszer Lagrange-függvénye \setbox0\hbox{$\mathcal{L}=\frac12 m r^2 \dot{\varphi}$}% \message{//depth:\the\dp0//}% \box0%. A \setbox0\hbox{$p_\varphi$}% \message{//depth:\the\dp0//}% \box0% kanonikus impulzusmomentum fázistérbeli integrálja a stacionárius pályán kvantált:

\[ \oint p_\varphi\,\mathrm{d}\varphi = 2\pi \,p_\varphi = nh, \]

ahol \setbox0\hbox{$p_\varphi=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}=mr^2\dot{\varphi} = mvr, $}% \message{//depth:\the\dp0//}% \box0% innen \setbox0\hbox{$p_\varphi=n\hbar$}% \message{//depth:\the\dp0//}% \box0%.

A lineáris oszcillátor Lagrange- és Hamilton-függvénye rendre

\[ \mathcal{L}=\frac12 m \dot{x}^2 - \frac12 m \omega^2 x^2, \qquad \mathcal{H}=\frac{p^2}{2m} + \frac12 m \omega^2 x^2, \]

ahol \setbox0\hbox{$p=\frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$}% \message{//depth:\the\dp0//}% \box0% kanonikus impulzus fázistérbeli integrálja az \setbox0\hbox{$E$}% \message{//depth:\the\dp0//}% \box0% energiájú pályán a \setbox0\hbox{$\mathcal{H}=E$}% \message{//depth:\the\dp0//}% \box0% egyenletű (azaz \setbox0\hbox{$\frac{p^2}{\left(\sqrt{2mE}\right)^2} + \frac{x^2}{\left(\sqrt{\textstyle \frac{2E}{m \omega^2}}\right)^2}=1$}% \message{//depth:\the\dp0//}% \box0% egyenletű) ellipszis területét adja, és a pályaintegrál kvantált

\[ \oint p\,\mathrm{d}x = \pi \sqrt{2mE}\sqrt{\frac{2E}{m \omega^2}} = \pi \frac{2E}{\omega} = nh, \]

amiből \setbox0\hbox{$E=n\omega\hbar$}% \message{//depth:\the\dp0//}% \box0%.